神龙大数据加速引擎MRACC问题之RDMA技术帮助大数据分布式计算优化如何解决

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 神龙大数据加速引擎MRACC问题之RDMA技术帮助大数据分布式计算优化如何解决

问题一:MRACC-Spark在网络和存储方面做了哪些优化?


MRACC-Spark在网络和存储方面做了哪些优化?


参考回答:

MRACC-Spark在网络和存储方面进行了软硬件加速优化。在网络方面,使用eRDMA进行网络加速,降低了shuffle阶段的数据交换延时,提升了CPU利用率。在存储方面,结合云上架构优势,采用缓存、文件裁剪、索引等优化手段,并尝试将压缩等运算卸载到异构器件,提升了整体性能。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666807



问题二:Spark SQL在MRACC中有哪些特定的优化措施?


Spark SQL在MRACC中有哪些特定的优化措施?


参考回答:

在MRACC中,Spark SQL进行了多项优化,包括但不限于:支持subquery的动态数据裁剪以减少参与计算的数据量;在物理计划执行阶段支持window topn排序以提升包含limit的SQL语句性能;支持parquet rowgroup裁剪、bloom filter join等高级特性;使用遗传算法搜索解决join table过多导致的cbo搜索开销暴增问题;支持去重下推、join外键消除、完整性约束等功能,并结合deltalake支持数据的增删改操作。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666808



问题三:MRACC-Spark的SQL引擎优化主要体现在哪些方面?


MRACC-Spark的SQL引擎优化主要体现在哪些方面?


参考回答:

MRACC-Spark的SQL引擎优化主要体现在anlyzer、optimizer、planner、Query execution等阶段。其中,针对AE机制进行了扩展,支持了subquery的动态数据裁剪;在物理计划执行阶段,引入了window topn排序、parquet rowgroup裁剪、bloom filter join等特性;同时,针对CBO机制在join table过多时导致的开销问题,引入了遗传算法搜索来优化。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666809



问题四:阿里云在2021年云栖大会上发布了什么重要架构,并提供了什么独特的加速能力?


阿里云在2021年云栖大会上发布了什么重要架构,并提供了什么独特的加速能力?


参考回答:

阿里云在2021年杭州云栖大会上发布了第四代神龙架构,提供了业界首个大规模弹性RDMA加速能力,这种能力通过RDMA技术实现了低时延、高性能的网络传输,减少了CPU开销。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666810


问题五:RDMA技术的主要优势是什么?它如何帮助大数据分布式计算优化?


RDMA技术的主要优势是什么?它如何帮助大数据分布式计算优化?


参考回答:

RDMA技术的主要优势在于提供直接内存访问的方式,数据传输bypass Kernel,减少了CPU的开销,并提供了低时延的高性能网络。在大数据分布式计算中,它特别优化了shuffle过程,通过将shuffle数据交换变为memory-network-memory的模式,充分利用了RDMA用户态内存直接交互、低延时、低CPU消耗的特点,从而显著提升了性能。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/666812

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
16天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
3天前
|
存储 分布式计算 数据可视化
大数据常用技术与工具
【10月更文挑战第16天】
21 4
|
16天前
|
存储 数据采集 监控
大数据技术:开启智能决策与创新服务的新纪元
【10月更文挑战第5天】大数据技术:开启智能决策与创新服务的新纪元
|
17天前
|
存储 分布式计算 druid
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
41 1
大数据-149 Apache Druid 基本介绍 技术特点 应用场景
|
9天前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
16天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
1月前
|
机器学习/深度学习 运维 分布式计算
大数据技术专业就业前景
大数据技术专业就业前景广阔,广泛应用于互联网、金融、医疗等众多行业,助力企业数字化转型。岗位涵盖大数据开发、分析、运维及管理,如大数据工程师、分析师和系统运维工程师等。这些岗位因专业性和稀缺性而享有优厚薪资,尤其在一线城市可达20万至50万年薪。随着技术进步和经验积累,从业者可晋升为高级职位或投身数据咨询、创业等领域,发展空间巨大。
42 5
|
1月前
|
数据采集 分布式计算 MaxCompute
MaxCompute 分布式计算框架 MaxFrame 服务正式商业化公告
MaxCompute 分布式计算框架 MaxFrame 服务于北京时间2024年09月27日正式商业化!
59 3
|
1月前
|
人工智能 编解码 搜索推荐
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
大模型、大数据与显示技术深度融合 加速智慧医疗多元化场景落地
|
12天前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
51 0

热门文章

最新文章