面向AI的服务器计算互连的创新探索
面向AI的服务器计算互连创新探索主要涵盖三个方向:Scale UP互连、AI高性能网卡及CIPU技术。Scale UP互连通过ALink系统实现极致性能,支持大规模模型训练,满足智算集群需求。AI高性能网卡针对大规模GPU通信和存储挑战,自研EIC网卡提供400G带宽和RDMA卸载加速,优化网络传输。CIPU作为云基础设施核心,支持虚拟化、存储与网络资源池化,提升资源利用率和稳定性,未来将扩展至2*800G带宽,全面覆盖阿里云业务需求。这些技术共同推动了AI计算的高效互联与性能突破。
云上普惠高性能计算平台,助力HPC行业创新
EHPC(弹性高性能计算)产品架构分为三个层次:资源层、服务层和使用界面层。资源层按HPC行业需求编排ECS实例、存储和调度管理资源,形成支持VPC和RDMA网络的集群。服务层提供集群资源管理、应用管理和作业调度等功能,并支持基于负载的弹性伸缩。使用界面层包括控制台、HPC PORTAL和Open API,方便不同用户操作。今年新发布的功能包括基于英特尔八代处理器的HPC实例、RDMA网络支持IB Verbs接口、拓扑感知的弹性伸缩能力以及Instant计算环境,优化了性能和成本。EHPC通过这些设计帮助客户快速上云并高效利用资源。
阿里云2024 KCD雅加达之旅精彩回顾
2024年11月30日,KCD在印尼雅加达顺利举行。活动涵盖Kubernetes生态的主题演讲与实操,吸引众多开发者与技术达人参与。阿里云作为赞助商,与印尼科技生态链接,4位专家为350余名参会者带来了1场主论坛和3场分论坛的分享。
马斯克X AI鲶鱼效应 倒逼AI行业快速发展
全球数据中心面临放缓困境,AI大模型的迭代因高质量数据短缺和高昂的建设成本而受限。马斯克的xAI公司迅速建设超大规模数据中心,引发OpenAI等竞争对手的焦虑,新一轮数据中心竞赛即将展开。
阿里云服务器计算架构X86/ARM/GPU/FPGA/ASIC/裸金属/超级计算集群有啥区别?
阿里云服务器ECS提供了多种计算架构,包括X86、ARM、GPU/FPGA/ASIC、弹性裸金属服务器及超级计算集群。X86架构常见且通用,适合大多数应用场景;ARM架构具备低功耗优势,适用于长期运行环境;GPU/FPGA/ASIC则针对深度学习、科学计算、视频处理等高性能需求;弹性裸金属服务器与超级计算集群则分别提供物理机级别的性能和高速RDMA互联,满足高性能计算和大规模训练需求。
操作系统中的进程间通信
本文将深入探讨现代操作系统中进程间通信(IPC)的机制与实现。我们将从基本原理开始,逐步解析管道、信号量、共享内存及消息队列等主要技术的原理和应用。通过实际案例,我们还将展示这些技术在真实系统中的应用效果和性能表现。