支付宝商业化广告算法问题之在ODL模型优化过程中,采取什么策略来提高模型的泛化能力呢

简介: 支付宝商业化广告算法问题之在ODL模型优化过程中,采取什么策略来提高模型的泛化能力呢

问题一:在ODL模型优化过程中,可以采取哪些策略来提高模型的泛化能力?


在ODL模型优化过程中,可以采取哪些策略来提高模型的泛化能力?


参考回答:

为了提高ODL模型的泛化能力,可以采取了以下策略:首先,固定emb层参数,使得在线模型只学习MLP层参数,这有助于缓解模型知识遗忘现象;

其次,实施样本回放策略,通过混合历史离线数据与实时流数据,保证训练样本与预测样本分布的一致性;

再者,采用模型热启动方法,通过定时restore离线周期训练模型来解决数据漂移问题;

最后,调整了ODL的学习率,相较于离线训练,减小学习率也有助于缓解模型过拟合。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/658947



问题二:模型热启动是什么?它如何帮助提升模型性能?


模型热启动是什么?它如何帮助提升模型性能?


参考回答:

模型热启动是指在在线学习过程中,定时恢复(restore)离线周期训练模型,以此解决长时间在线学习可能导致的参数漂移问题。除了初始阶段通过加载预训练离线模型来加速在线模型收敛外,我们还加大了热启动的频率,由每周改为每天,这有助于降低pcoc(预测错误率),从而提升模型性能。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/658948



问题三:什么是热词定制化?


什么是热词定制化?


参考回答:

热词定制化是针对低频偏僻词语识别的一种语音模型研究。它允许用户在识别语音时预设一些已知的先验词汇,以帮助模型更准确地识别或修正那些发音相近的词汇,使其符合用户的预期结果。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/658949



问题四:WFST热词定制化方案的优点和缺点是什么?


WFST热词定制化方案的优点和缺点是什么?


参考回答:

WFST热词定制化的优点是从解码过程入手,召回稳定。

然而,它的缺点在于需要在ASR模型推理之外进行基于N-gram的解码,而且对于一些在训练数据中出现较少的词,ASR模型提供的后验概率过低,可能导致候选路径中没有包含待激励的词,此时基于WFST的热词增强可能会失效。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/658950



问题五:SeACo-Paraformer模型是如何解决CLAS模型存在的问题的?


SeACo-Paraformer模型是如何解决CLAS模型存在的问题的?


参考回答:

SeACo-Paraformer模型通过引入用于热词建模的bias decoder,以及与感知热词位置的label计算loss进行显式的热词预测训练,从而解决了CLAS模型生效不稳定的问题。在解码阶段,SeACo-Paraformer将热词后验概率与原始ASR后验概率进行加权融合,实现了更加稳定的热词召回。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/658951

相关文章
|
5天前
|
存储 并行计算 算法
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
【动态多目标优化算法】基于自适应启动策略的混合交叉动态约束多目标优化算法(MC-DCMOEA)求解CEC2023研究(Matlab代码实现)
|
8天前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
8天前
|
机器学习/深度学习 资源调度 算法
遗传算法模型深度解析与实战应用
摘要 遗传算法(GA)作为一种受生物进化启发的优化算法,在复杂问题求解中展现出独特优势。本文系统介绍了GA的核心理论、实现细节和应用经验。算法通过模拟自然选择机制,利用选择、交叉、变异三大操作在解空间中进行全局搜索。与梯度下降等传统方法相比,GA不依赖目标函数的连续性或可微性,特别适合处理离散优化、多目标优化等复杂问题。文中详细阐述了染色体编码、适应度函数设计、遗传操作实现等关键技术,并提供了Python代码实现示例。实践表明,GA的成功应用关键在于平衡探索与开发,通过精心调参维持种群多样性同时确保收敛效率
47 7
|
8天前
|
机器学习/深度学习 边缘计算 人工智能
粒子群算法模型深度解析与实战应用
蒋星熠Jaxonic是一位深耕智能优化算法领域多年的技术探索者,专注于粒子群优化(PSO)算法的研究与应用。他深入剖析了PSO的数学模型、核心公式及实现方法,并通过大量实践验证了其在神经网络优化、工程设计等复杂问题上的卓越性能。本文全面展示了PSO的理论基础、改进策略与前沿发展方向,为读者提供了一份详尽的技术指南。
26 0
粒子群算法模型深度解析与实战应用
|
8天前
|
机器学习/深度学习 运维 算法
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
基于粒子群优化算法的配电网光伏储能双层优化配置模型[IEEE33节点](选址定容)(Matlab代码实现)
|
8天前
|
机器学习/深度学习 存储 算法
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
基于模型预测算法的混合储能微电网双层能量管理系统研究(Matlab代码实现)
|
4天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
|
5天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
64 11
|
5天前
|
机器学习/深度学习 传感器 算法
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
基于全局路径的无人地面车辆的横向避让路径规划研究[蚂蚁算法求解](Matlab代码实现)
|
5天前
|
算法 安全 BI
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)
基于粒子群算法的多码头连续泊位分配优化研究(Matlab代码实现)

热门文章

最新文章