模型热启动是指在在线学习过程中,定时恢复(restore)离线周期训练模型,以此解决长时间在线学习可能导致的参数漂移问题。除了初始阶段通过加载预训练离线模型来加速在线模型收敛外,我们还加大了热启动的频率,由每周改为每天,这有助于降低pcoc(预测错误率),从而提升模型性能。
版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。