【机器学习】QLoRA:基于PEFT亲手量化微调Qwen2大模型

简介: 【机器学习】QLoRA:基于PEFT亲手量化微调Qwen2大模型

一、引言

之前陆续写了Qwen1.5Qwen2.0GLM-4等国产开源大模型的原理、训练及推理相关的文章,每一篇都拿到了热榜第一,但其中训练部分均基于Llama-factory框架,对于工程师而言,最喜欢的就是刨根问底,使用中间层的训练框架,还是少一些“安全感”。今天我们抛开中间框架,深入底层,一步一步带大家微调一个大模型。

二、量化与微调—原理剖析

2.1 为什么要量化微调?

量化微调要解决的问题:全参数、高比特(32bit或16bit)微调训练需要大量的GPU显存资源,于是通过缩减参数位数(Quantization)以及缩减可训练参数规模(LoRA)等策略降低训练成本,达到全参数微调同等的效果。

如上图,针对一个7B的模型,全参数16位微调,需要60G显存,QLoRA4位微调仅需6GB,仅需要1/10。面对昂贵的GPU资源,量化微调技术真的是“知识解放生产力”的典范。下面分别讲解量化和微调的原理。

2.2 量化(Quantization)

2.2.1 量化原理

向量量化:int8/int4

通俗将就是将float16位浮点型转换为int8位整型,可以分为“0点量化zero-point”和“最大绝对值absmax”量化,下图是“最大绝对值absmax”量化的示例。

我们计划量化至int8的范围为[-127,127]:

  1. 取fp16向量的最大值5.4,127除以5.4得到23.5,作为缩放因子
  2. fp16向量的所有数乘以23.5得到int8的向量

反量化为FP16:

  1. 将int8的向量除以缩放因子23.5

矩阵量化(0退化)

经过证明,量化的损失是由离群点(偏离整体分布的点)特征导致的,于是设定一个异常阈值,将大于阈值的列抽离出来维持fp16,对小于异常阈值的矩阵进行量化计算,可以保证精度不丢失。动图演示如下:

抽取线性矩阵W、X的非离群值量化为int8:

  1. 从输入的隐含状态中,按列提取异常值 (即大于某个阈值的值)。
  2. 对 FP16 离群值矩阵和 Int8 非离群值矩阵分别作矩阵乘法。

反量化为FP16:

  1. 反量化非离群值的矩阵乘结果并其与离群值矩阵乘结果相加,获得最终的 FP16 结果。

2.2.2 量化代码

bitsandbytes库:量化任何模型的最简单方法之一,与GGUF均属于零样本量化,不需要量化校准数据及校准过程(而AWQ和GPTQ等量化方啊均需要少量样本进行校准) 。任何模型只要含有 torch.nn.Linear 模块,就可以对其进行开箱即用的量化。

nf4/fp4量化代码,很简单,仅需要一个BitsAndBytesConfig配置即可使用。

from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfig
###int4量化配置
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置
    #llm_int8_threshold=6.0,
    #llm_int8_has_fp16_weight=False,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",#添加nf4配置,去掉为fp4
    bnb_4bit_use_double_quant=True,#添加nf4配置,去掉为fp4
)
model = AutoModelForCausalLM.from_pretrained(model_dir,device_map=device,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=quantization_config)
print(model)

输出模型结构,可以看到Attention和MLP层中的Linear线性层全部变成了linear4bit:

Qwen2ForCausalLM(
  (model): Qwen2Model(
    (embed_tokens): Embedding(152064, 3584)
    (layers): ModuleList(
      (0-27): 28 x Qwen2DecoderLayer(
        (self_attn): Qwen2SdpaAttention(
          (q_proj): Linear4bit(in_features=3584, out_features=3584, bias=True)
          (k_proj): Linear4bit(in_features=3584, out_features=512, bias=True)
          (v_proj): Linear4bit(in_features=3584, out_features=512, bias=True)
          (o_proj): Linear4bit(in_features=3584, out_features=3584, bias=False)
          (rotary_emb): Qwen2RotaryEmbedding()
        )
        (mlp): Qwen2MLP(
          (gate_proj): Linear4bit(in_features=3584, out_features=18944, bias=False)
          (up_proj): Linear4bit(in_features=3584, out_features=18944, bias=False)
          (down_proj): Linear4bit(in_features=18944, out_features=3584, bias=False)
          (act_fn): SiLU()
        )
        (input_layernorm): Qwen2RMSNorm()
        (post_attention_layernorm): Qwen2RMSNorm()
      )
    )
    (norm): Qwen2RMSNorm()
  )
  (lm_head): Linear(in_features=3584, out_features=152064, bias=False)
)

2.3 微调(Fine-Tuning

2.3.1 LoRA

核心思想:通过低秩分解来模拟参数的改变量,以极小的参数来实现大模型的间接训练。

如下图,涉及到矩阵相乘的模块,比如transformers中的Q、K、V线性模块,在原始的权重旁边增加两个低维度的小矩阵A、B,通过前后两个矩阵A、B相乘,第一个矩阵A负责降维,第二个矩阵B负责升维,中间层维度为r,为了将维度还原。

假设原始维度为d,这样就将d*d降为d*r+r*d

  • 训练:只更新新增的A、B两个小矩阵参数
  • 推理:将原矩阵W与A、B两个小矩阵乘积BA加起来作为结果h=Wx+BAx=(W+BA)x,对于推理来说,不增加额外资源

代码很简单,还是一个配置文件LoraConfig:

from peft import LoraConfig,get_peft_model
config = LoraConfig(
    r=32,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print(model)
  1. 引用peft(Parameter-Efficient Fine-Tuning)库
  2. 配置Lora配置文件LoraConfig
  3. 通过peft封装的get_peft_model方法将LoraConfig应用于model

查看模型结构会发现原有的Linear4bit结构,如q_proj:

(q_proj): Linear4bit(in_features=3584, out_features=3584, bias=True)

变成了:

(q_proj): lora.Linear4bit(
  (base_layer): Linear4bit(in_features=3584, out_features=3584, bias=True)
  (lora_dropout): ModuleDict(
    (default): Dropout(p=0.05, inplace=False)
  )
  (lora_A): ModuleDict(
    (default): Linear(in_features=3584, out_features=32, bias=False)
  )
  (lora_B): ModuleDict(
    (default): Linear(in_features=32, out_features=3584, bias=False)
  )
  (lora_embedding_A): ParameterDict()
  (lora_embedding_B): ParameterDict()
)

在Linear4bit基础上,新增了

  • lora_dropout:用于防止过拟合
  • Lora_A和Lora_B的ModuleDict:其中A的out_features与B的in_features相同,都为r=32
  • Lora_A和Lora_B的embedding层

对["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"]等7个Linear4bit量化后的完整模型结构如下

PeftModelForCausalLM(
  (base_model): LoraModel(
    (model): Qwen2ForCausalLM(
      (model): Qwen2Model(
        (embed_tokens): Embedding(152064, 3584)
        (layers): ModuleList(
          (0-27): 28 x Qwen2DecoderLayer(
            (self_attn): Qwen2SdpaAttention(
              (q_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=3584, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=3584, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (k_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=512, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=512, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (v_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=512, bias=True)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=512, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (o_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=3584, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=3584, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (rotary_emb): Qwen2RotaryEmbedding()
            )
            (mlp): Qwen2MLP(
              (gate_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=18944, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=18944, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (up_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=3584, out_features=18944, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=3584, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=18944, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (down_proj): lora.Linear4bit(
                (base_layer): Linear4bit(in_features=18944, out_features=3584, bias=False)
                (lora_dropout): ModuleDict(
                  (default): Dropout(p=0.05, inplace=False)
                )
                (lora_A): ModuleDict(
                  (default): Linear(in_features=18944, out_features=32, bias=False)
                )
                (lora_B): ModuleDict(
                  (default): Linear(in_features=32, out_features=3584, bias=False)
                )
                (lora_embedding_A): ParameterDict()
                (lora_embedding_B): ParameterDict()
              )
              (act_fn): SiLU()
            )
            (input_layernorm): Qwen2RMSNorm()
            (post_attention_layernorm): Qwen2RMSNorm()
          )
        )
        (norm): Qwen2RMSNorm()
      )
      (lm_head): Linear(in_features=3584, out_features=152064, bias=False)
    )
  )
)

2.3.2 QLoRA

聪明的人已经想到了,将上文讲到的Quantization与Lora结合,不就是QLoRA吗。

  • 在训练模型的时候,将Linear层转换为Linear4bit
  • 对Linear4bit量化层添加A、B两个低秩为r的小矩阵
  • 这两个小矩阵的权重通过量化权重的反向传播梯度进行微调

在LoRA的基础上,QLoRA关键做了3点创新:

  • NF4(4bit NormalFloat):改进的4位量化法,确保每个量化箱中的值数量相等。
  • 双量化:对第一次量化后的那些常量再进行一次量化,减少存储空间。
  • 分页优化器:使用Nvidia内存分页,在GPU资源不足的情况下,使用CPU计算

回忆一下上面量化部分BitsAndBytesConfig的代码,是不是很熟悉:

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置
    #llm_int8_threshold=6.0,
    #llm_int8_has_fp16_weight=False,
    llm_int8_enable_fp32_cpu_offload=True,
    bnb_4bit_compute_dtype=torch.float16,
    bnb_4bit_quant_type="nf4",#添加nf4配置,去掉为fp4
    bnb_4bit_use_double_quant=True,#添加nf4配置,去掉为fp4
)

三、量化与微调—实战演练:以Qwen2为例,亲手微调你的第一个AI大模型

3.1 模型预处理—依赖安装、库包导入、模型下载

from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen2-7B-Instruct')
 
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset,load_from_disk
from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfig
 
from peft import LoraConfig,get_peft_model,prepare_model_for_kbit_training

这里还是

  • 使用modelscope下载模型,
  • 使用transformers的自动分词器(AutoTokenizer)、自动模型库(AutoModelForCausalLM)、量化配置(BitsAndBytesConfig)等处理模型,
  • 使用dataset处理数据,
  • 使用peft加载lora配置并进行微调
  • 以及离不开的torch。

回忆一下安装conda环境以及pip依赖包的方法

conda create -n train_llm python
conda activate train_llm
 
pip install transformers,modelscope,peft,torch,datasets,accelerate,bitsandbytes -i https://mirrors.cloud.tencent.com/pypi/simple

3.2 模型预处理—加载量化模型

采用BitsAndBytesConfig配置量化参数,采用AutoModelForCausalLM加载量化参数

device = "auto" # the value needs to be a device name (e.g. cpu, cuda:0) or 'auto', 'balanced', 'balanced_low_0', 'sequential'
 
###int4量化配置
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置
    #llm_int8_threshold=6.0,
    #llm_int8_has_fp16_weight=False,
    llm_int8_enable_fp32_cpu_offload=True,
    bnb_4bit_compute_dtype=torch.float16,#虽然我们以4位加载和存储模型,但我们在需要时会部分反量化他,并以16位精度进行计算
    bnb_4bit_quant_type="nf4",#nf量化类型
    bnb_4bit_use_double_quant=True,#双重量化,量化一次后再量化,进一步解决显存
)
model = AutoModelForCausalLM.from_pretrained(model_dir,device_map=device,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True,padding_side="right",use_fast=False)
 
print(model)

3.3 模型预处理—加载LoRA网络

from peft import LoraConfig,get_peft_model,prepare_model_for_kbit_training
 
model = prepare_model_for_kbit_training(model)
config = LoraConfig(
    r=32,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print(model)
  • 采用prepare_model_for_kbit_training对norm和LM head层进行处理,提升训练稳定性(非常必要,否则会报显存不足的错误):
  • layer norm 层保留 FP32 精度
  • embedding层以及 LM head 输出层保留 FP32 精度
  • 采用get_peft_model为模型添加lora层

3.4 数据预处理—下载、处理数据

这里采用huggingface上的Abirate/english_quotes数据集,我这里由于网络环境原因,手动下载保存至./目录。

data = load_dataset('json',data_files="./quotes.jsonl")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
print(data)

数据集样例(这里为例调试,实际请替换自己的数据集。):

通过tokenizer和data.map将每一行quote中的数据分词处理为input_ids。输出为

3.5 模型训练

经过包导入、模型量化、模型lora、数据预处理,重要到了第5步:模型训练

trainer = transformers.Trainer(
    model=model,
    train_dataset=data["train"],
    args=transformers.TrainingArguments(
        per_device_train_batch_size=4,
        gradient_accumulation_steps=4,
        warmup_steps=10,
        max_steps=50,
        learning_rate=3e-4,
        fp16=True,
        logging_steps=1,
        output_dir="outputs/checkpoint-1"+time_str,
        optim="paged_adamw_8bit",
        save_strategy = 'steps',
        save_steps = 10,
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
 
model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
trainer.train()
 
trainer.save_model(trainer.args.output_dir)

采用transformers的训练器Trainer,输入qlora模型、数据、训练参数、数据收集器等参数,启动训练。

Qwen2-7B-Instruct模型按以上参数训练占用显存约20G。

3.6 模型合并及推理

以上是一段模型合并推理测试代码,主要包括

  1. 导入peft内的PeftModel模型类和PeftConfig配置类
  2. 通过trainer.args.output_dir获取微调模型目录peft_model_dir
  3. 获取微调后的模型配置config
  4. 加载基座模型
  5. 通过PeftModel.from_pretrained(model,peft_model_dir)将基座模型与微调模型合并
  6. 模型推理,同使用基座模型一样!
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
 
peft_model_dir = trainer.args.output_dir
config = PeftConfig.from_pretrained(peft_model_dir)
print(config)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path, return_dict=True,  device_map=device,
    torch_dtype=torch.float16, quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
 
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_dir)
 
print(model)
# 模拟对话
prompt = "详细介绍一下大语言模型,评价下与深度学习的差异"
messages = [
    {"role": "system", "content": "你是一个智能助理."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
 
gen_kwargs = {"max_length": 512, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**model_inputs, **gen_kwargs)
    outputs = outputs[:, model_inputs['input_ids'].shape[1]:] #切除system、user等对话前缀
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))

推理所用显存:约15G

推理结果(本文仅为跑通流程,不提供涉及业务的任何相关数据,各位可以根据自己实际情况替换3.4的数据部分):

3.7 附:完整代码

from datetime import datetime
now = datetime.now()
time_str = now.strftime('%Y-%m-%d %H:%M:%S')
print(time_str)
 
from modelscope import snapshot_download
model_dir = snapshot_download('qwen/Qwen2-7B-Instruct')
 
import torch
import torch.nn as nn
import transformers
from datasets import load_dataset,load_from_disk
from transformers import AutoTokenizer, AutoModelForCausalLM,BitsAndBytesConfig
 
 
device = "auto" # the value needs to be a device name (e.g. cpu, cuda:0) or 'auto', 'balanced', 'balanced_low_0', 'sequential'
 
###int4量化配置
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,  # 或者 load_in_8bit=True,根据需要设置
    #llm_int8_threshold=6.0,
    #llm_int8_has_fp16_weight=False,
    llm_int8_enable_fp32_cpu_offload=True,
    bnb_4bit_compute_dtype=torch.float16,#虽然我们以4位加载和存储模型,但我们在需要时会部分反量化他,并以16位精度进行计算
    bnb_4bit_quant_type="nf4",#nf量化类型
    bnb_4bit_use_double_quant=True,#双重量化,量化一次后再量化,进一步解决显存
)
model = AutoModelForCausalLM.from_pretrained(model_dir,device_map=device,trust_remote_code=True,torch_dtype=torch.float16,quantization_config=quantization_config)
tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True,padding_side="right",use_fast=False)
model.gradient_checkpointing_enable
 
print(model)
 
def print_trainable_parameters(model):
    """
    Prints the number of trainable parameters in the model.
    """
    trainable_params = 0
    all_param = 0
    for _, param in model.named_parameters():
        all_param += param.numel()
        if param.requires_grad:
            trainable_params += param.numel()
    print(
        f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
    )
 
from peft import LoraConfig,get_peft_model,prepare_model_for_kbit_training
 
model = prepare_model_for_kbit_training(model)
config = LoraConfig(
    r=32,
    lora_alpha=16,
    target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj","down_proj"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
print(model)
print_trainable_parameters(model)
 
 
# Verifying the datatypes.
dtypes = {}
for _, p in model.named_parameters():
    dtype = p.dtype
    if dtype not in dtypes:
        dtypes[dtype] = 0
    dtypes[dtype] += p.numel()
total = 0
for k, v in dtypes.items():
    total += v
for k, v in dtypes.items():
    print(k, v, v / total)
 
"""### Training"""
 
data = load_dataset('json',data_files="./quotes.jsonl")
data = data.map(lambda samples: tokenizer(samples["quote"]), batched=True)
print(data)
 
trainer = transformers.Trainer(
    model=model,
    train_dataset=data["train"],
    args=transformers.TrainingArguments(
        per_device_train_batch_size=4,
        gradient_accumulation_steps=4,
        warmup_steps=10,
        max_steps=50,
        learning_rate=3e-4,
        fp16=True,
        logging_steps=1,
        output_dir="outputs/checkpoint-1"+time_str,
        optim="paged_adamw_8bit",
        save_strategy = 'steps',
        save_steps = 10,
    ),
    data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False),
)
 
model.config.use_cache = False  # silence the warnings. Please re-enable for inference!
trainer.train()
 
trainer.save_model(trainer.args.output_dir)
 
 
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
 
peft_model_dir = trainer.args.output_dir
config = PeftConfig.from_pretrained(peft_model_dir)
print(config)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path, return_dict=True,  device_map=device,
    torch_dtype=torch.float16, quantization_config=quantization_config
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
 
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_dir)
 
print(model)
# 模拟对话
prompt = "详细介绍一下大语言模型,评价下与深度学习的差异"
messages = [
    {"role": "system", "content": "你是一个智能助理."},
    {"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
 
gen_kwargs = {"max_length": 512, "do_sample": True, "top_k": 1}
with torch.no_grad():
    outputs = model.generate(**model_inputs, **gen_kwargs)
    outputs = outputs[:, model_inputs['input_ids'].shape[1]:] #切除system、user等对话前缀
    print(tokenizer.decode(outputs[0], skip_special_tokens=True))

四、总结

本文首先对量化和微调的原理进行剖析,接着以Qwen2-7B为例,基于QLoRA、PEFT一步一步带着大家微调自己的大模型,本文参考全网peft+qlora微调教程,一步一排坑,让大家在网络环境不允许的情况下,也能丝滑的开启大模型微调之旅。希望能帮助到大家,喜欢的话关注+三连噢。


目录
相关文章
|
3月前
|
机器学习/深度学习 人工智能 分布式计算
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
本次教程介绍了如何使用 PAI ×LLaMA Factory 框架,基于全参方法微调 Qwen2-VL 模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
|
10天前
|
编解码 机器人 测试技术
技术实践 | 使用 PAI+LLaMA Factory 微调 Qwen2-VL 模型快速搭建专业领域知识问答机器人
Qwen2-VL是一款具备高级图像和视频理解能力的多模态模型,支持多种语言,适用于多模态应用开发。通过PAI和LLaMA Factory框架,用户可以轻松微调Qwen2-VL模型,快速构建文旅领域的知识问答机器人。本教程详细介绍了从模型部署、微调到对话测试的全过程,帮助开发者高效实现定制化多模态应用。
|
2月前
|
机器学习/深度学习 数据采集 自然语言处理
【机器学习】大模型驱动下的医疗诊断应用
摘要: 随着科技的不断发展,机器学习在医疗领域的应用日益广泛。特别是在大模型的驱动下,机器学习为医疗诊断带来了革命性的变化。本文详细探讨了机器学习在医疗诊断中的应用,包括疾病预测、图像识别、基因分析等方面,并结合实际案例进行分析。同时,还展示了部分相关的代码示例,以更好地理解其工作原理。
94 3
【机器学习】大模型驱动下的医疗诊断应用
|
2月前
|
机器学习/深度学习 算法 PyTorch
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
【机器学习】大模型环境下的应用:计算机视觉的探索与实践
74 1
|
2月前
|
机器学习/深度学习 自然语言处理 前端开发
前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革
除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。
600 1
|
3月前
|
存储 人工智能 并行计算
Pai-Megatron-Patch:围绕Megatron-Core打造大模型训练加速生态
Pai-Megatron-Patch(https://github.com/alibaba/Pai-Megatron-Patch)是阿里云人工智能平台PAI研发的围绕Nvidia MegatronLM的大模型开发配套工具,旨在帮助开发者快速上手大模型,完成大模型(LLM)相关的高效分布式训练,有监督指令微调,下游任务评估等大模型开发链路。最近一年来,我们持续打磨Pai-Megatron-Patch的性能和扩展功能,围绕Megatron-Core(以下简称MCore)进一步打造大模型训练加速技术生态,推出更多的的训练加速、显存优化特性。
|
4月前
|
机器学习/深度学习 数据采集 物联网
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
【机器学习】Google开源大模型Gemma2:原理、微调训练及推理部署实战
154 0
|
25天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
77 4
|
4天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
21 2
|
22天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
39 1
下一篇
DataWorks