前端大模型入门:Transformer.js 和 Xenova-引领浏览器端的机器学习变革

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 除了调用API接口使用Transformer技术,你是否想过在浏览器中运行大模型?Xenova团队推出的Transformer.js,基于JavaScript,让开发者能在浏览器中本地加载和执行预训练模型,无需依赖服务器。该库利用WebAssembly和WebGPU技术,大幅提升性能,尤其适合隐私保护、离线应用和低延迟交互场景。无论是NLP任务还是实时文本生成,Transformer.js都提供了强大支持,成为构建浏览器AI应用的核心工具。

除了调用别人的api接口使用transformer技术,你是否想过将大模型在浏览器中运行呢?尤其是WebGPU的出现,性能比WebGL高不少,很多小任务真的不再需要在一个中心运行了。

不少同学买课学python了,但我还是在坚持用js尝试,相信一切都可以用js实现的,下面就介绍下我是如何实现的吧~~

随着人工智能和深度学习的普及,越来越多的应用开始借助强大的预训练模型来处理文本、图像等数据。然而,大多数这类模型需要依赖于云端服务器,用户端必须通过网络调用后端的API,这不仅带来了延迟问题,还可能引发隐私和数据安全的担忧。为了解决这些挑战,Xenova 团队推出了 Transformer.js,一个基于 JavaScript 的库,让开发者可以在浏览器中本地加载和执行预训练模型,摆脱服务器的依赖。

前置知识和准备

  • javascript 相关的web知识,创建一个html文件,引入库
<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <title>网页大模型</title>
</head>
<body>
  <div id="app">
    <div id="zh">
    </div>
    <div id="en">
    </div>
    <div id="info">
    </div>
  </div>
  <script type="module">
    import { pipeline, env } from "https://cdn.jsdelivr.net/npm/@xenova/transformers@2.17.2/dist/transformers.min.js";
    // 后续的代码在这里
</script>
</body>
</html>

image.gif

env.remoteHost = 'https://hf-mirror.com'

image.gif

什么是 Transformer.js?

Transformer.js 是 Xenova 团队开发的一个 JavaScript 库,旨在让用户能够在浏览器或 Node.js 环境中运行 Transformer 模型,而不需要依赖于后端服务器。这个库的核心功能是使用 WebAssembly(Wasm)和 WebGPU 等技术,将复杂的深度学习任务本地化执行。

Transformer.js 支持的模型涵盖了 Hugging Face 的 Transformers 模型库,包括 GPT、BERT、T5 等,广泛应用于自然语言处理任务,如文本生成、情感分析、翻译等。

Transformer是一种架构,现在很多模型,包括大语言模型,大都基于此构建,这里就不展开了,感兴趣的可以看相关论文,尤其是Attention is all you need。

Xenova系列

Xenova 的核心目标是让机器学习技术更加普及且易于访问。他们的愿景是通过提供开源工具,让每个人都能在任意设备上高效使用 AI 模型,甚至无需依赖强大的后端服务器。Transformer.js 便是这个愿景的关键实现,用户能够直接在浏览器中使用这些强大的 Transformer 模型。

欢迎pr构建生态,因为它是ONNX Runtime 的web/node端实现,所以PyTorch, TensorFlow, JAX 等构建的模型都可以转化成onnx的,想要构建自己的模型参考下面的github仓库说明

Transformer.js 的主要特点

1. 无后端依赖

Transformer.js 使用户可以在浏览器中本地运行 Transformer 模型,不再依赖服务器端的推理服务。所有的计算都在客户端完成,既减少了延迟,又消除了数据传输的隐私隐患。

2. 模型加载和使用便捷

通过简单的几行代码,开发者可以加载和使用 Hugging Face Transformers 模型。例如,以下代码展示了加载一个中文转英文模型:

// 定义要使用的模型和任务类型 
    const task = "text-classification";
    const model = "Xenova/opus-mt-zh-en";
    const infoEl = document.getElementById('info');
    const pipe = pipeline("text2text-generation", model, {
      progress_callback: d=>{
        infoEl.innerHTML = JSON.stringify(d);
      },
    });

image.gif

然后我们调用这个定义好的管道

const zhEl = document.getElementById('zh');
    const enEl = document.getElementById('en');
    const app = document.getElementById('app');
    const start = Date.now();
    async function main() {
      const zh = "你好吗?";
      zhEl.innerHTML = `中文:${zh}`;
      const transfer1 = await pipe;
      const res1 = await transfer1(zh);
      const en = res1[0].generated_text;
      enEl.innerHTML = '英文:' + en;
      infoEl.innerHTML = `耗时:${Date.now() - start}ms`;
    }
    main();

image.gif

右键html文件,选择打开方式->chrome,首次打开需要等待模型加载,后续就不用了(可以试试别的中文,测试下效果)

image.gif 编辑

3. 跨平台支持 - Web+Nodejs

Transformer.js 在浏览器和 Node.js 环境中都可以无缝运行,适用于各种设备和操作系统。同时,借助 WebAssembly,Transformer.js 可以在大多数现代浏览器中提供原生般的性能表现。

4. 性能优化

通过使用 WebAssembly 和 WebGPU,Transformer.js 能够显著提高模型推理的速度,尤其是在具有高性能图形处理单元(GPU)的设备上。相比传统的 JavaScript 数学库,它能够更高效地执行深度学习模型。

5. 开源与社区支持

Transformer.js 是一个完全开源的项目,任何人都可以参与贡献或者在项目的 GitHub 仓库中提出问题。Xenova 致力于维护活跃的开发者社区,不断优化和扩展该项目。

Transformer.js 的应用场景

由于 Transformer.js 使得模型推理可以完全在客户端完成,因此它非常适合以下应用场景:

1. 隐私保护

在一些敏感应用中,如医疗数据处理或个人隐私数据的分析,用户的数据无需发送到服务器端进行处理,而是直接在本地完成推理,减少数据泄露的风险。

2. 离线应用

许多应用在没有网络连接的情况下仍然需要处理任务,比如离线聊天机器人、离线翻译工具等。Transformer.js 使得这些离线应用的实现变得更加简单和高效。

3. 低延迟交互

通过消除与服务器的往返延迟,Transformer.js 能够提供实时的推理结果。例如,用户可以在网页上直接使用实时的文本生成或情感分析功能,而不会因为网络延迟而影响体验。

4. 教育与研究

学生和研究人员可以使用 Transformer.js 在本地实验机器学习模型,无需租用昂贵的云计算资源,也不必担心学习过程中的数据外泄问题。

Transformer.js 与 TensorFlow.js 的对比

随着浏览器端机器学习技术的不断发展,多个工具库应运而生。Transformer.jsTensorFlow.js 是其中两个重要的框架,它们都旨在让开发者能够在浏览器或客户端上运行机器学习模型。虽然二者的目标有相似之处,但在设计思路、使用场景和技术实现上却有显著差异。以下章节将对 Transformer.jsTensorFlow.js 进行详细对比,帮助开发者根据具体需求选择适合的工具。

方面 Transformer.js TensorFlow.js
主要用途 自然语言处理 (NLP) 推理 通用机器学习任务(推理与训练)
支持模型 Transformer 模型(GPT、BERT、T5 等) 各类神经网络模型(CNN、RNN、强化学习等)
推理与训练能力 仅支持推理 支持推理和训练
计算加速 WebAssembly, WebGPU WebGL, Wasm, WebGPU
生态支持 紧密集成 Hugging Face 丰富的社区与官方支持,支持 TensorFlow 生态
学习曲线 简单易用,适合 NLP 应用 较为复杂,适合广泛的机器学习任务

Transformer.js 更适合专注于 NLP 推理的场景,而 TensorFlow.js 则是一个通用性更强的框架,适合涉及不同领域的机器学习任务以及模型训练的需求。根据具体的项目需求和开发者的熟悉程度,选择合适的工具将帮助更高效地实现目标。

未来发展方向-端云结合

随着浏览器技术的不断进步,如 WebGPU 的广泛应用,Transformer.js 的性能和适用范围将进一步提升。Xenova 计划在未来添加更多预训练模型的支持,并优化其在移动设备等低性能环境下的表现。同时,随着 JavaScript 生态的持续扩展,Transformer.js 有潜力成为构建浏览器端 AI 应用的核心工具之一。

正如我在最新llama3.2小参数版本1B的古董机测试中说的那样,端云结合才是趋势。

结论

Transformer.js 通过让 Transformer 模型直接在浏览器或 Node.js 环境中运行,解决了传统机器学习应用中的许多痛点。无论是出于隐私保护、实时性需求,还是离线应用的需求,Transformer.js 都为开发者提供了新的可能性

后续会出应用类的文章,切记住本文的那一定点内容,后续的大模型进阶,基本上都是基于这个库,也默认你配置了国内镜像源

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
2
1
0
58
分享
相关文章
如何用大模型评估大模型——PAI-Judge裁判员大语言模型的实现简介
阿里云人工智能平台 PAI 推出 PAI-Judge 裁判员大模型,为用户构建符合应用场景的多维度、细粒度的评测体系,支持单模型评测和双模型竞技两种模式,允许用户自定义参数,实现准确、灵活、高效的模型自动化评测,为模型迭代优化提供数据支撑。 相比通用大模型尤其在回答确定性/数学类问题、角色扮演、创意文体写作、翻译等场景下,PAI-Judge 系列模型表现优异,可以直接用于大模型的评估与质检。
菜鸟之路Day23一一JavaScript 入门
本文介绍了 JavaScript 的基础内容,包括 JS 的引入方式、基础语法、数据类型、运算符、类型转换、函数、对象(如 Array、String、自定义对象、JSON、BOM 和 DOM)、事件监听,以及 Vue 框架的初步使用。重点讲解了内部和外部脚本的引入、变量声明(var、let、const)、常见输出语句、数组与字符串的操作方法、DOM 操作及事件绑定,并通过实例展示了 Vue 的双向数据绑定和常用指令(v-bind、v-model、v-on、v-if、v-for 等)。
24 7
DeepSeek服务器繁忙?拒绝稍后再试!基于阿里云PAI实现0代码一键部署DeepSeek-V3和DeepSeek-R1大模型
阿里云PAI平台支持零代码一键部署DeepSeek-V3和DeepSeek-R1大模型,用户可轻松实现从训练到部署再到推理的全流程。通过PAI Model Gallery,开发者只需简单几步即可完成模型部署,享受高效便捷的AI开发体验。具体步骤包括开通PAI服务、进入控制台选择模型、一键部署并获取调用信息。整个过程无需编写代码,极大简化了模型应用的门槛。
227 7
前端架构思考 :专注于多框架的并存可能并不是唯一的方向 — 探讨大模型时代前端的分层式微前端架构
随着前端技术的发展,微前端架构成为应对复杂大型应用的流行方案,允许多个团队使用不同技术栈并将其模块化集成。然而,这种设计在高交互性需求的应用中存在局限,如音视频处理、AI集成等。本文探讨了传统微前端架构的不足,并提出了一种新的分层式微前端架构,通过展示层与业务层的分离及基于功能的横向拆分,以更好地适应现代前端需求。
115 0
模板字符串和普通字符串在浏览器和 Node.js 中的性能表现是否一致?
综上所述,模板字符串和普通字符串在浏览器和 Node.js 中的性能表现既有相似之处,也有不同之处。在实际应用中,需要根据具体的场景和性能需求来选择使用哪种字符串处理方式,以达到最佳的性能和开发效率。
132 63
|
4月前
|
Moment.js库是如何处理不同浏览器的时间戳格式差异的?
总的来说,Moment.js 通过一系列的技术手段和策略,有效地处理了不同浏览器的时间戳格式差异,为开发者提供了一个稳定、可靠且易于使用的时间处理工具。
153 57
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
201 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
【JavaScript】——JS基础入门常见操作(大量举例)
JS引入方式,JS基础语法,JS增删查改,JS函数,JS对象
在浏览器执行js脚本的两种方式
【10月更文挑战第20天】本文介绍了在浏览器中执行HTTP请求的两种方式:`fetch`和`XMLHttpRequest`。`fetch`支持GET和POST请求,返回Promise对象,可以方便地处理异步操作。`XMLHttpRequest`则通过回调函数处理请求结果,适用于需要兼容旧浏览器的场景。文中还提供了具体的代码示例。
在浏览器执行js脚本的两种方式
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等