【AI大模型】Transformers大模型库(十三):Datasets库

简介: 【AI大模型】Transformers大模型库(十三):Datasets库

一、引言

这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。

🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。

🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍Transformers的Datasets用法

二、Datasets数据处理

2.1 概述

Transformers库通常与Hugging Face的datasets库一起使用来处理和准备数据。以下是如何使用datasets库加载数据集和进行基本预处理的步骤,以用于Transformers的模型训练和评估

2.2 使用方法

2.2.1 步骤1: 安装并导入datasets

首先,确保你安装了datasets库。可以通过pip安装:

pip install datasets

然后在Python脚本中导入:

from datasets import load_dataset

2.2.2 步骤2: 加载数据集

Hugging Face Hub提供了大量的数据集,你可以直接加载。例如,加载IMDB数据集

dataset = load_dataset('imdb')

这将加载IMDB电影评论数据集,它是一个文本分类任务,用于判断评论是正面还是负面。

2.2.3 步骤3: 查看数据集

查看数据集的结构和前几条数据:

print(dataset['train'][:5])

2.2.4 步骤4: 数据预处理

通常需要对数据进行预处理,比如使用Transformers的分词器进行文本编码。假设你已经有了一个分词器实例tokenizer

from transformers import AutoTokenizer
 
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
 
def tokenize_function(examples):
    return tokenizer(examples['text'], padding='max_length', truncation=True)
 
# 使用map函数批量应用到数据集上
tokenized_dataset = dataset.map(tokenize_function, batched=True)

2.2.5 步骤5: 分割数据集为训练集和验证集(如果数据集未预先分割)

如果数据集没有内置的训练/验证分割,你可以使用train_test_split方法:

train_test_split = tokenized_dataset['train'].train_test_split(test_size=0.2)
train_dataset = train_test_split['train']
eval_dataset = train_test_split['test']

2.2.6 步骤6: 使用Transformers进行训练或评估

这一步通常涉及到创建Trainer对象,但这里仅展示数据处理部分。实际训练过程会涉及更多Transformers的使用,如定义TrainingArguments和创建Trainer实例。

三、总结

以上步骤展示了如何使用datasets库来准备数据,这是使用Transformers进行自然语言处理任务的关键步骤之一。

目录
相关文章
|
4月前
|
机器学习/深度学习 人工智能 人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
439 121
|
4月前
|
数据采集 人工智能 搜索推荐
智能新纪元:多模态大模型如何重塑人机交互
智能新纪元:多模态大模型如何重塑人机交互
295 113
|
4月前
|
人工智能 人机交互 知识图谱
当AI学会“融会贯通”:多模态大模型如何重塑未来
当AI学会“融会贯通”:多模态大模型如何重塑未来
351 114
|
4月前
|
人工智能 搜索推荐 程序员
当AI学会“跨界思考”:多模态模型如何重塑人工智能
当AI学会“跨界思考”:多模态模型如何重塑人工智能
439 120
|
4月前
|
人工智能 安全 搜索推荐
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
当AI学会“看”和“听”:多模态大模型如何重塑人机交互
341 117
|
4月前
|
人工智能 API 开发工具
构建AI智能体:一、初识AI大模型与API调用
本文介绍大模型基础知识及API调用方法,涵盖阿里云百炼平台密钥申请、DashScope SDK使用、Python调用示例(如文本情感分析、图像文字识别),助力开发者快速上手大模型应用开发。
1789 16
构建AI智能体:一、初识AI大模型与API调用
|
4月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
1049 53
|
5月前
|
人工智能 安全 中间件
阿里云 AI 中间件重磅发布,打通 AI 应用落地“最后一公里”
9 月 26 日,2025 云栖大会 AI 中间件:AI 时代的中间件技术演进与创新实践论坛上,阿里云智能集团资深技术专家林清山发表主题演讲《未来已来:下一代 AI 中间件重磅发布,解锁 AI 应用架构新范式》,重磅发布阿里云 AI 中间件,提供面向分布式多 Agent 架构的基座,包括:AgentScope-Java(兼容 Spring AI Alibaba 生态),AI MQ(基于Apache RocketMQ 的 AI 能力升级),AI 网关 Higress,AI 注册与配置中心 Nacos,以及覆盖模型与算力的 AI 可观测体系。
1175 57
|
4月前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
591 30

热门文章

最新文章