【AI大模型】Transformers大模型库(十三):Datasets库

简介: 【AI大模型】Transformers大模型库(十三):Datasets库

一、引言

这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。

🤗 Transformers 提供了数以千计的预训练模型,支持 100 多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的 NLP 技术人人易用。

🤗 Transformers 提供了便于快速下载和使用的API,让你可以把预训练模型用在给定文本、在你的数据集上微调然后通过 model hub 与社区共享。同时,每个定义的 Python 模块均完全独立,方便修改和快速研究实验。

🤗 Transformers 支持三个最热门的深度学习库: Jax, PyTorch 以及 TensorFlow — 并与之无缝整合。你可以直接使用一个框架训练你的模型然后用另一个加载和推理。

本文重点介绍Transformers的Datasets用法

二、Datasets数据处理

2.1 概述

Transformers库通常与Hugging Face的datasets库一起使用来处理和准备数据。以下是如何使用datasets库加载数据集和进行基本预处理的步骤,以用于Transformers的模型训练和评估

2.2 使用方法

2.2.1 步骤1: 安装并导入datasets

首先,确保你安装了datasets库。可以通过pip安装:

pip install datasets

然后在Python脚本中导入:

from datasets import load_dataset

2.2.2 步骤2: 加载数据集

Hugging Face Hub提供了大量的数据集,你可以直接加载。例如,加载IMDB数据集

dataset = load_dataset('imdb')

这将加载IMDB电影评论数据集,它是一个文本分类任务,用于判断评论是正面还是负面。

2.2.3 步骤3: 查看数据集

查看数据集的结构和前几条数据:

print(dataset['train'][:5])

2.2.4 步骤4: 数据预处理

通常需要对数据进行预处理,比如使用Transformers的分词器进行文本编码。假设你已经有了一个分词器实例tokenizer

from transformers import AutoTokenizer
 
model_name = "bert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_name)
 
def tokenize_function(examples):
    return tokenizer(examples['text'], padding='max_length', truncation=True)
 
# 使用map函数批量应用到数据集上
tokenized_dataset = dataset.map(tokenize_function, batched=True)

2.2.5 步骤5: 分割数据集为训练集和验证集(如果数据集未预先分割)

如果数据集没有内置的训练/验证分割,你可以使用train_test_split方法:

train_test_split = tokenized_dataset['train'].train_test_split(test_size=0.2)
train_dataset = train_test_split['train']
eval_dataset = train_test_split['test']

2.2.6 步骤6: 使用Transformers进行训练或评估

这一步通常涉及到创建Trainer对象,但这里仅展示数据处理部分。实际训练过程会涉及更多Transformers的使用,如定义TrainingArguments和创建Trainer实例。

三、总结

以上步骤展示了如何使用datasets库来准备数据,这是使用Transformers进行自然语言处理任务的关键步骤之一。

目录
相关文章
|
18天前
|
人工智能 Java Serverless
阿里云函数计算助力AI大模型快速部署
随着人工智能技术的快速发展,AI大模型已经成为企业数字化转型的重要工具。然而,对于许多业务人员、开发者以及企业来说,探索和利用AI大模型仍然面临诸多挑战。业务人员可能缺乏编程技能,难以快速上手AI模型;开发者可能受限于GPU资源,无法高效构建和部署AI应用;企业则希望简化技术门槛,以更低的成本和更高的效率利用AI大模型。
87 12
|
4天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
12月14日,由中国软件行业校园招聘与实习公共服务平台携手魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·湖南大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——湖南大学站圆满结营
|
16天前
|
人工智能 安全 数据安全/隐私保护
文档智能 & RAG让AI大模型更懂业务测评
文档智能 & RAG让AI大模型更懂业务
144 74
|
4天前
|
机器学习/深度学习 人工智能 智能设计
VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性
VisionFM 是一个多模态多任务的视觉基础模型,专为通用眼科人工智能设计。通过预训练大量眼科图像,模型能够处理多种眼科成像模态,并在多种眼科任务中展现出专家级别的智能性和准确性。
32 4
VisionFM:通用眼科 AI 大模型,具备眼科疾病诊断能力,展现出专家级别的准确性
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
智谱AI推出的GLM-4V-Flash是一款专注于图像理解的免费开放大模型,提供API接口支持用户上传图片URL或Base64编码图片获取详细的图像描述。该模型通过深度学习和卷积神经网络技术,简化了图像分析流程,提高了开发效率,适用于内容审核、辅助视障人士、社交媒体、教育和电子商务等多个应用场景。
107 14
GLM-4V-Flash:智谱 AI 免费开放的图像理解大模型 API 接口
|
16天前
|
机器学习/深度学习 人工智能 物联网
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
12月05日,由中国软件行业校园招聘与实习公共服务平台携手阿里魔搭社区共同举办的AI赋能大学计划·大模型技术与产业趋势高校行AIGC项目实战营·电子科技大学站圆满结营。
AI赋能大学计划·大模型技术与应用实战学生训练营——电子科技大学站圆满结营
|
4天前
|
人工智能 安全 机器人
OpenAI重拾规则系统,用AI版机器人定律守护大模型安全
在人工智能领域,大语言模型(LLM)展现出强大的语言理解和生成能力,但也带来了安全性和可靠性挑战。OpenAI研究人员提出“规则基于奖励(RBR)”方法,通过明确规则引导LLM行为,确保其符合人类价值观和道德准则。实验显示,RBR方法在安全性与有用性之间取得了良好平衡,F1分数达97.1。然而,规则制定和维护复杂,且难以完全捕捉语言的多样性。论文:https://arxiv.org/pdf/2411.01111。
39 13
|
2天前
|
人工智能 自然语言处理 计算机视觉
AI大模型开启智能化新时代
12月19日下午,复旦大学计算机科学技术学院第十二期“步青讲坛”在江湾校区二号交叉学科楼E1006报告厅举行。本期讲坛特别邀请了阿里巴巴集团副总裁、IEEE Fellow叶杰平教授做题为《AI大模型开启智能化新时代》的精彩技术报告。
46 4
|
3天前
|
人工智能 安全 图形学
【AI落地应用实战】篡改检测技术前沿探索——从基于检测分割到大模型
在数字化洪流席卷全球的当下,视觉内容已成为信息交流与传播的核心媒介,然而,随着PS技术和AIGC技术的飞速发展,图像篡改给视觉内容安全带来了前所未有的挑战。 本文将探讨篡改检测技术的现实挑战,分享篡改检测技术前沿和最新应用成果。
|
10天前
|
人工智能 API Windows
免费部署本地AI大语言模型聊天系统:Chatbox AI + 马斯克grok2.0大模型(简单5步实现,免费且比GPT4.0更好用)
本文介绍了如何部署本地AI大语言模型聊天系统,使用Chatbox AI客户端应用和Grok-beta大模型。通过获取API密钥、下载并安装Chatbox AI、配置模型,最终实现高效、智能的聊天体验。Grok 2大模型由马斯克X-AI发布,支持超长文本上下文理解,免费且易于使用。
44 0