Prompt工程问题之AI Prompt对prompt的帮助优化如何解决

简介: Prompt工程问题之AI Prompt对prompt的帮助优化如何解决

问题一:什么是AI Prompt,它如何帮助优化prompt?


什么是AI Prompt,它如何帮助优化prompt?


参考回答:

AI Prompt是一种让AI帮助生成相关问题的prompt的方法。它允许用户向AI提出关于如何优化prompt的问题,AI会基于用户的Prompt提供一系列的建议和步骤,以生成更有效的prompt。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628465



问题二:什么是COT(Chain Of Thought),它如何提高大模型的推理能力?


什么是COT(Chain Of Thought),它如何提高大模型的推理能力?


参考回答:

COT是一种在prompt中增加让模型逐步思考后给出答案的提示方法。它允许模型将问题分解为多个中间步骤,并解释它是如何得到答案的。这种方法能够显著提高大模型在复杂场景下的推理能力。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628466



问题三:Prompt Chaining是如何工作的?


Prompt Chaining是如何工作的?


参考回答:

Prompt Chaining是一种将一个复杂推理任务分解为多个子任务的方法。它通过创建一系列针对子任务的提示操作,并将每个子任务的结果作为下一个子任务的输入,从而逐步推导出最终答案。这种方法有助于提高推理的准确性和透明度。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628467



问题四:什么是TOT(Tree Of Thought)?


什么是TOT(Tree Of Thought)?


参考回答:

TOT是一种维护思维树的方法,用于在推理过程中对中间步骤进行评估与验证。它假设有多位专家独立地思考问题的每个步骤,并允许在发现错误步骤时排除相关专家。这种方法有助于确保推理过程中的每个步骤都是正确的。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628468



问题五:RAG(Retrieval Augmented Generation)是什么?


RAG(Retrieval Augmented Generation)是什么?


参考回答:

RAG是一种结合信息检索和文本生成的人工智能技术。它允许大模型在推理过程中首先通过搜索获取相关信息,然后再进行推理生成一个连贯、准确的回答。这种方法有助于解决大模型知识不足的问题,并使其能够快速学习特定知识。同时,RAG还能帮助解决大模型幻觉问题,提高输出结果的可靠性。


关于本问题的更多问答可点击原文查看:

https://developer.aliyun.com/ask/628469

相关文章
|
18天前
|
存储 人工智能 算法
【AI系统】计算图的优化策略
本文深入探讨了计算图的优化策略,包括算子替换、数据类型转换、存储优化等,旨在提升模型性能和资源利用效率。特别介绍了Flash Attention算法,通过分块计算和重算策略优化Transformer模型的注意力机制,显著减少了内存访问次数,提升了计算效率。此外,文章还讨论了内存优化技术,如Inplace operation和Memory sharing,进一步减少内存消耗,提高计算性能。
85 34
【AI系统】计算图的优化策略
|
4天前
|
人工智能 Linux API
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
PromptWizard 是微软开源的 AI 提示词自动化优化框架,通过自我演变和自我适应机制,迭代优化提示指令和上下文示例,提升大型语言模型(LLMs)在特定任务中的表现。本文详细介绍了 PromptWizard 的主要功能、技术原理以及如何运行该框架。
50 8
PromptWizard:微软开源 AI 提示词自动化优化框架,能够迭代优化提示指令和上下文示例,提升 LLMs 特定任务的表现
|
17天前
|
机器学习/深度学习 人工智能 自然语言处理
Llama 3.3:Meta AI 开源新的纯文本语言模型,专注于多语言对话优化
Meta AI推出的Llama 3.3是一款70B参数的纯文本语言模型,支持多语言对话,具备高效、低成本的特点,适用于多种应用场景,如聊天机器人、客户服务自动化、语言翻译等。
70 13
Llama 3.3:Meta AI 开源新的纯文本语言模型,专注于多语言对话优化
|
20天前
|
机器学习/深度学习 人工智能 JSON
【实战干货】AI大模型工程应用于车联网场景的实战总结
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
309 34
|
18天前
|
机器学习/深度学习 存储 人工智能
【AI系统】离线图优化技术
本文回顾了计算图优化的各个方面,包括基础优化、扩展优化和布局与内存优化,旨在提高计算效率。基础优化涵盖常量折叠、冗余节点消除、算子融合、算子替换和算子前移等技术。这些技术通过减少不必要的计算和内存访问,提高模型的执行效率。文章还探讨了AI框架和推理引擎在图优化中的应用差异,为深度学习模型的优化提供了全面的指导。
38 5
【AI系统】离线图优化技术
|
18天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
48 4
【AI系统】计算图优化架构
|
7天前
|
人工智能 计算机视觉
幻觉不一定有害,新框架用AI的幻觉优化图像分割技术
在图像分割领域,传统方法依赖大量手动标注数据,效率低下且难以适应复杂场景。为解决这一问题,研究人员提出了“任务通用可提示分割”方法,利用多模态大型语言模型(MLLM)生成实例特定提示。然而,MLLM常出现幻觉,影响分割精度。为此,研究团队开发了“Prompt-Mask Cycle”(ProMaC)框架,通过迭代生成和验证提示及掩码,有效利用幻觉信息,提高了分割精度和效率。实验结果表明,ProMaC在多个基准数据集上表现出色,为图像分割技术的发展提供了新思路。
22 6
|
21天前
|
存储 机器学习/深度学习 人工智能
【AI系统】指令和存储优化
在AI编译器底层,除了广泛应用的循环优化外,还存在指令优化和存储优化两大类。指令优化通过利用硬件提供的特殊加速指令,如向量化和张量化,提高计算效率;存储优化则关注如何高效管理数据存储与访问,减少延迟,提高整体计算效率。这些技术共同作用,极大提升了AI系统的性能。
29 1
|
21天前
|
存储 机器学习/深度学习 人工智能
【AI系统】算子循环优化
循环优化是提升计算性能的关键技术,主要通过改进数据局部性和增强计算并行性来实现。数据局部性优化利用缓存机制减少内存访问延迟,如循环分块、重排等;计算并行性优化则通过多核、向量化等技术最大化硬件效能,如循环展开、融合、拆分等。这些方法共同作用,显著提升程序执行效率。
35 1
|
1天前
|
人工智能
阿里云领跑生成式AI工程领域,两大维度排名Gartner®生成式AI工程Market Quadrant全球第二
阿里云凭借强劲实力入选Gartner 《Innovation Guide for Generative AI Technologies》所有领域的新兴领导者象限。