【python】python超市销售订单数据分析可视化(源码+数据集)【独一无二】

简介: 【python】python超市销售订单数据分析可视化(源码+数据集)【独一无二】

一、设计要求

某超市一周的销售订单数据文件SuperMarket_order.txt中共包含117条样本数据,每条样本数据包括订单编号、付款金额、订单状态、物品类别、购物方式、支付类别、付款人所在省份等7个信息。请利用Numpy、Pandas和Matploylib.pylot等模块,将画布进行2行3列布局,分别对付款金额(分为100以内、100-500和500以上三个类别)、订单状态、物品类别、购物方式、支付类别和付款人所在省份等6个信息进行统计分析,并将统计分析的结果依次可视化展示在画布的6个不同区域内,区域内所采用的图形类别应至少包括三种,例如,散点图、柱状图、饼图等。(60分)


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈


二、设计思路

这段代码的主要任务是分析和可视化超市销售订单数据,通过对数据的预处理、分类统计和可视化,展示订单数据的多维度信息。整个设计过程可以分为以下几个步骤:数据读取与清理、数据预处理、数据分类、数据可视化和结果展示。下面是详细的设计思路描述。

1、数据读取与清理
  1. 文件读取
  2. 代码首先从文件 SuperMarket_order.txt 中读取数据。该文件存储了超市销售订单的原始数据,数据以逗号分隔。

使用 Python 内置的 open 函数打开文件,并逐行读取数据。每一行数据都通过 strip 方法去除首尾的空白字符,并通过 split 方法以逗号为分隔符进行拆分。

columns = ['订单编号', '付款金额', '订单状态', '物品类别', '购物方式', '支付类别', '付款人所在省份']
data = []
with open('SuperMarket_order.txt', 'r', encoding='utf-8') as file:
    for line in file:
        items = line.strip().split(',')
        data.append(items[1:3] + items[6:7] + items[7:8] + items[9:10] + items[10:11] + items[12:13])

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈


数据存储:


读取到的每一行数据,被存储到一个名为 data 的列表中。列表的每一项都是一个订单的所有字段信息,具体字段包括订单编号、付款金额、订单状态、物品类别、购物方式、支付类别和付款人所在省份。

使用 pandas 库将列表转换为 DataFrame 结构,并指定列名,这样可以方便后续的数据处理和分析。

数据清理:


在数据清理过程中,首先定义了一个辅助函数 is_float,用于检查字符串是否可以转换为浮点数。这个步骤确保了付款金额字段的数据是有效的数值。

利用 is_float 函数过滤掉付款金额不能转换为浮点数的行,保证数据的准确性和一致性。

将付款金额字段的类型转换为浮点数,方便后续的数值计算和分类处理。

、数据预处理与分类
  1. 数据预处理
  • 数据清理完成后,需要对数据进行进一步的预处理。具体包括将付款金额字段转换为浮点数类型,这样可以进行数值计算和分类。
# 检查并清理数据
def is_float(value):
    try:
        float(value)
        return True
    except ValueError:
        return False

数据分类:

为了更好地分析付款金额的分布情况,定义了一个分类函数 categorize_payment,根据付款金额将其分类为三个区间:100以内、100-500 和 500以上。

使用 apply 方法将分类函数应用于付款金额字段,生成一个新的分类字段 付款金额分类,标识每笔订单所属的金额区间。👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈

# 对付款金额进行分类
def categorize_payment(amount):
    if amount < 100:
        return '100以内'
    elif 100 <= amount <= 500:
        return '100-500'
    else:
        return '500以上'
3、数据可视化
  1. 设置绘图参数
  • 为了支持中文字符显示,使用 matplotlib 库的 rcParams 参数设置字体为 SimHei,并设置 axes.unicode_minusFalse,以确保负号可以正常显示。
  1. 创建子图布局
  • 使用 plt.subplots 创建一个包含 2 行 3 列子图的布局,并设置图形的总尺寸为 18x12 英寸。这种布局方式可以将多个图表放在同一个图形窗口中,方便对比和分析。
  1. 绘制各类图表
  • 付款金额分类统计
  • 使用柱状图展示不同付款金额分类的订单数量分布。通过 value_counts 方法统计各个金额分类的订单数量,并绘制柱状图显示分类结果。
# 付款金额分类统计
payment_counts = data['PaymentCategory'].value_counts()
axs[0, 0].bar(payment_counts.index, payment_counts.values)
axs[0, 0].set_title('付款金额分类统计')
axs[0, 0].set_xlabel('付款金额分类')
axs[0, 0].set_ylabel('订单数量')

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈


订单状态统计:

使用饼图展示不同订单状态的分布情况。通过 value_counts 方法统计各个订单状态的数量,并绘制饼图显示各状态所占比例。

物品类别统计:

  • 使用柱状图展示不同物品类别的订单数量分布。通过 value_counts 方法统计各个物品类别的数量,并绘制柱状图显示分类结果。
axs[0, 2].bar(category_counts.index, category_counts.values, color='lightgreen')
axs[0, 2].set_title('物品类别统计')
axs[0, 2].set_xlabel('物品类别')
axs[0, 2].set_ylabel('数量')

购物方式统计:

使用柱状图展示不同购物方式的订单数量分布。通过 value_counts 方法统计各个购物方式的数量,并绘制柱状图显示分类结果。

支付类别统计:

使用饼图展示不同支付类别的分布情况。通过 value_counts 方法统计各个支付类别的数量,并绘制饼图显示各支付类别所占比例。

付款人所在省份统计:

使用柱状图展示不同省份的订单数量分布。通过 value_counts 方法统计各个省份的订单数量,并绘制柱状图显示区域分布情况,同时将 x 轴标签旋转 45 度,以便更好地显示省份名称。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈

4、结果展示
  1. 布局调整
  • 使用 plt.tight_layout 函数调整子图布局,确保各个子图之间没有重叠,并留出适当的空白。
  1. 图形标题
  • 设置整个图形的总标题为 超市销售订单数据分析,以说明图形内容的主题。
  • 显示图形:


最后使用 plt.show 函数显示绘制的图形,将所有统计结果展示给用户。

整个代码设计以数据分析和可视化为核心,通过数据读取与清理、数据预处理与分类、数据可视化和结果展示四个步骤,全面展示了超市销售订单数据的多维度信息。通过对订单数据的深入分析,可以帮助理解顾客行为、优化销售策略和提高运营效率。设计思路清晰,代码结构合理,数据处理和可视化效果直观,能够有效地支持业务决策和市场分析。


三、可视化分析

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈

使用 Matplotlib 生成了六个子图,分别展示了不同维度的数据统计信息:

图示位置:左上角(axs[0, 0])

图示类型:柱状图

含义:展示了不同付款金额分类(如 100以内、100-500、500以上)的订单数量分布。横轴为付款金额分类,纵轴为订单数量。通过该图可以看出每个金额区间内的订单数量,帮助了解客户付款金额的分布情况。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈

  1. 订单状态统计
  • 图示位置:上中(axs[0, 1])
  • 图示类型:饼图
  • 含义:展示了订单状态(如已付款、未付款、已取消等)的分布情况。饼图的每一部分代表一种订单状态,大小表示该状态的订单数量占总订单数量的比例。通过该图可以直观地了解订单处理的整体情况。

物品类别统计:

图示位置:右上角(axs[0, 2])

图示类型:柱状图

含义:展示了不同物品类别(如食品、日用品、饮料等)的订单数量分布。横轴为物品类别,纵轴为数量。通过该图可以了解各类商品的销售情况,帮助优化商品管理和库存控制。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈

购物方式统计:

图示位置:左下角(axs[1, 0])

图示类型:柱状图

含义:展示了不同购物方式(如线上购物、线下购物等)的订单数量分布。横轴为购物方式,纵轴为数量。通过该图可以分析顾客的购物偏好,帮助制定相应的营销策略。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈

支付类别统计:

图示位置:下中(axs[1, 1])

图示类型:饼图

含义:展示了不同支付类别(如现金支付、信用卡支付、电子支付等)的订单数量占比。饼图的每一部分代表一种支付类别,大小表示该类别订单数量占总订单数量的比例。通过该图可以了解顾客的支付习惯,帮助改进支付方式的设置。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈


付款人所在省份统计:

图示位置:右下角(axs[1, 2])

图示类型:柱状图

含义:展示了不同省份顾客的订单数量分布。横轴为省份,纵轴为数量。通过该图可以分析订单的地域分布情况,帮助制定区域性的销售策略和物流安排。

通过这些图表,能够全面地了解超市销售订单数据的各个方面,包括付款金额分布、订单状态、物品类别、购物方式、支付类别和地域分布等。这些可视化结果为管理和决策提供了有力的支持,帮助更好地理解顾客行为和市场需求,从而优化销售策略和运营管理。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 超市 ” 获取。👈👈👈


目录
打赏
0
3
3
0
65
分享
相关文章
基于Python+Vue开发的商城管理系统源码+运行步骤
基于Python+Vue开发的商城管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的网上商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
28 7
基于Python+Vue开发的反诈视频宣传管理系统源码+运行步骤
基于Python+Vue开发的反诈视频宣传管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的反诈宣传管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
22 6
基于Python+Vue开发的家具商城管理系统源码+运行步骤
基于Python+Vue开发的家具商城管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的家具商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
31 8
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
[oeasy]python081_ai编程最佳实践_ai辅助编程_提出要求_解决问题
本文介绍了如何利用AI辅助编程解决实际问题,以猫屎咖啡的购买为例,逐步实现将购买斤数换算成人民币金额的功能。文章强调了与AI协作时的三个要点:1) 去除无关信息,聚焦目标;2) 将复杂任务拆解为小步骤,逐步完成;3) 巩固已有成果后再推进。最终代码实现了输入验证、单位转换和价格计算,并保留两位小数。总结指出,在AI时代,人类负责明确目标、拆分任务和确认结果,AI则负责生成代码、解释含义和提供优化建议,编程不会被取代,而是会更广泛地融入各领域。
51 28
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
16天前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
26 4
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境
以上内容是一个简单的实现在Java后端中通过DockerClient操作Docker生成python环境并执行代码,最后销毁的案例全过程,也是实现一个简单的在线编程后端API的完整流程,你可以在此基础上添加额外的辅助功能,比如上传文件、编辑文件、查阅文件、自定义安装等功能。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
在线编程实现!如何在Java后端通过DockerClient操作Docker生成python环境

热门文章

最新文章