AI大模型应用开发实战(03)-为啥LLM还没能完全替代你?

简介: 【8月更文挑战第4天】

1 不具备记忆能力的

它是零状态的,一些大模型产品,尤其他们的API,发现你和它对话,尤其是多轮对话时,经过一些轮次后,这些记忆就消失了,因为它也记不住那么多。

2 上下文窗口的限制

大模型对其输入、输出有数量限制。为保护它自己,这计算能力或保护相当于带宽的概念,如openAI之前只有32k。最新上下文窗口扩张到128k,相当于一本《Clean Code》,这角度来看,这个问题其实已被解决。

但其他很多模型上下文窗口还是比较小,就有很多限制。如不可发一长段prompt或提示词,也不可不停在那对话.

你要注意计算整个窗口token消耗,避免被截断。

3 实时信息更新慢,新旧知识难区分

基于预训练的模型,拿大量数据在神经网络的训练,然后形成模型,其知识库就依赖于拿去训练的这些材料。

底模数据较小时,就会出现幻觉,胡乱回答。

4 无法灵活的操控外部系统

很多大模型只可对话,但无法作为一个外脑去操作外部的一些系统。虽然ChatGPT出现插件机制、开发工具。但实际用后,还是相当于提供一个非常标准的东西,定制开发或更深度融合较难。

若想用大模型作为一个外脑操控智能家居系统、操控汽车,需要有一些连接器和框架帮助。

5 无法为领域问题提供专业靠谱答案

你问泛泛而谈的东西,都能回答好,可一旦问他非常专业问题,就答不上来,因为这专业问题,他可能不涉及。虽然他回答的答案是看起来是像一个人在回答,但一眼就能看出来那个答案不对。

针对以上问题,业界提出两种解决方案,但也都不能彻底解决。

6 解决方案

6.1 微调(Fine-tunning)

主要解决专业问题,专业知识库问题,包括知识更新问题。

把这些数据喂给大模型,再做次训练。其实一次训练也无法解决知识感知信息问题,只能更新其数据库。成本较高,因为相当于把你的数据喂给LLM,然后再全量训练一次,成本很高。

适用场景

做一些自有的大量数据的行业模型。所谓行业模型,如某专业领域的公司,积累大量行业数据,如制药公司在制药过程积累大量制药数据,你希望这个数据以AI智能方式指导工作,就可用这种方式。把这些数据喂给大模型,对它再做一次调教。

这就涉及到

MaaS

Module as a Service,模型即服务。通过这个微调在大模型基础上灌入行业数据,实现这种行业模型,适合手里拥有大量行业数据的。

这也只能解决领域数据专业性和知识库更新问题,无法解决操作外部系统、记忆能力、窗口扩张。

6.2 提示词工程(prompt engineering)

通过上下文提示词设计引导。在LLM基础上把这种专业数据通过:

  • Embedding嵌入
  • prompt提示词

这两个工具实现精准的专业回答,同时可实现:

  • 实时系统的感知
  • 操作外部系统
  • 记忆增强
  • 窗口控制扩张

好处明显,无需训练,不用去在LLM上面做训练。

适用场景

适合数据样本较少的场景。

如你有一本书,希望从这本书得到一些信息,但又不想去一个个字读它,你希望有机器人,你问他问题,他直接从书里找答案。这种就能把书的数据作为专业数据,然后嵌入到LLM,再通过prompt方式去引导,得到精确答案。

这过程中间甚至还可把这些答案,和打印机系统连接,直接打印。

小结

两种都可解决大模型问题,但适用场景不同,各自擅长点不一,很多时候,两者结合效果更好。

微调,现在已经把门槛降到很低了,可直接将你想微调的数据upload上去,但闭源大模型还存有数据安全问题,数据所有性问题和成本问题。

而提示词工程适合开源大模型,如chatglm。若在本地部署大模型,再做这种词嵌入和提示词引导,即可实现企业内部的专业行业模型。但底层LLM可能不那么强大,只有个6b、13b,可能在语言组织或一些智能度上稍低。代表就是LangChain。

7 总结

大模型的这几个问题都有,有两套这样的解决方案:

  • Model as aSerivce 模型即服务通过“微调”技术,在LLM基础上灌入行业数据,实现行业模型
  • promptengineering提示词工程,通过上下文提示词设计31号LM输出精确答案

都有自己的优劣点,然后都有自己适用的场景。

所以用啥方案呢?看所需项目的情况,本专栏偏向提示词工程, 即基于LangChain框架的方式。

目录
相关文章
|
11天前
|
人工智能 Java Spring
【保姆级图文详解】大模型、Spring AI编程调用大模型
【保姆级图文详解】大模型、Spring AI编程调用大模型
853 10
【保姆级图文详解】大模型、Spring AI编程调用大模型
|
15天前
|
人工智能 Java Docker
Spring AI Alibaba 游乐场开放!一站式体验AI 应用开发全流程
Playground 是基于 Spring AI Alibaba 框架打造的 AI 应用体验平台,集成了对话、图片生成、RAG、MCP、工具调用等功能。用户可通过前端 UI 与后端完整实现快速复刻专属 AI 应用。项目支持 Docker 部署和本地构建,提供源码供定制开发,并配备详细文档与在线体验地址,助力开发者高效上手 AI 应用开发。
287 22
|
9天前
|
数据采集 人工智能 自然语言处理
AI邂逅青年科学家,大模型化身科研“搭子”
2025年6月30日,首届魔搭开发者大会在北京举办,涵盖前沿模型、MCP、Agent等七大论坛。科研智能主题论坛汇聚多领域科学家,探讨AI与科研融合的未来方向。会上展示了AI在药物发现、生物计算、气候变化、历史文献处理等多个领域的创新应用,标志着AI for Science从工具辅助向智能体驱动的范式跃迁。阿里云通过“高校用云”计划推动科研智能化,助力全球科研创新。
|
6天前
|
人工智能 分布式计算 DataWorks
阿里云ODPS多模态数据处理实战:MaxFrame的分布式AI数据管道构建
初次接触MaxCompute时,我被其强大的分布式计算能力所震撼,但真正让我深度依赖这套生态的转折点,是在一次处理百万级图像数据集的项目中。当时我们面临的挑战是如何在有限的时间内完成大规模图像特征提取和模型训练,传统的单机处理方案显然无法胜任。经过深入调研,我们选择了MaxCompute的Object Table功能来管理非结构化数据,配合MaxFrame进行分布式计算,整个处理流程的效率提升了300%以上。 在随后的几年实践中,我逐渐发现ODPS不仅仅是一个大数据处理平台,更是一个完整的数据生态系统。从DataWorks的可视化开发环境,到Hologres的实时查询能力,再到MaxCompu
53 3
阿里云ODPS多模态数据处理实战:MaxFrame的分布式AI数据管道构建
|
10天前
|
存储 人工智能 Java
【保姆级图文详解】基于Spring AI的旅游大师应用开发、多轮对话、文件持久化、拦截器实现
【保姆级图文详解】基于Spring AI的旅游大师应用开发、多轮对话、文件持久化、拦截器实现
127 2
【保姆级图文详解】基于Spring AI的旅游大师应用开发、多轮对话、文件持久化、拦截器实现
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
AI 智能客服搭建实战:如何建立一个企业级智能客服系统?
2025 年全球 AI 客服市场规模超 800 亿美元,企业面临意图识别误差、多语言支持等挑战。合力亿捷通过混合云架构、双引擎驱动等四层技术架构,结合小样本微调 + 主动学习等策略,实现服务效率提升 50% 以上、人工成本降低 40%,助力企业突破 “人工智障” 困境。
136 3
|
10天前
|
传感器 数据采集 人工智能
AR眼镜与AI视觉大模型,开启AR工业巡检与维护全新体验
AR眼镜与AI视觉大模型深度融合,革新工业设备巡检方式。实时采集数据、智能分析预警,提升巡检效率与准确性,保障工业生产安全高效运行。
AR眼镜与AI视觉大模型,开启AR工业巡检与维护全新体验
|
15天前
|
人工智能 数据可视化 API
AI 时代,那些你需要了解的开源项目 (一) |AI应用开发平台篇
本文深入解析了Dify、n8n和Flowise三大AI应用开发平台的功能特点与适用场景。在AI技术日益普及的今天,这些工具让非专业人士也能轻松构建AI应用,助力企业实现智能化转型。并介绍了快速部署的方案
|
3天前
|
存储 人工智能 Java
Springboot集成AI Springboot3 集成阿里云百炼大模型CosyVoice2 实现Ai克隆语音(未持久化存储)
本项目基于Spring Boot 3.5.3与Java 17,集成阿里云百炼大模型CosyVoice2实现音色克隆与语音合成。内容涵盖项目搭建、音色创建、音频合成、音色管理等功能,适用于希望快速掌握Spring Boot集成语音AI技术的开发者。需提前注册阿里云并获取API Key。
|
10天前
|
人工智能 架构师 程序员
用户说 | 手把手体验通义灵码 2.0:AI 程序员如何让我从“调参侠”进阶“架构师”?
通义灵码 2.0 是强大的 AI 编程工具,助力开发者从“调参侠”进阶为“架构师”。它支持跨语言开发、智能单元测试生成和图生代码等功能,显著提升开发效率。新增 QwQ 模型具备“代码脑补”能力,可推荐性能优化策略。尽管功能强大,但仍需注意环境隔离与代码审查,避免过度依赖。通义灵码 2.0 不仅是工具,更是开发者的“外接大脑”,帮助应对全栈开发挑战。