【python】商业数据聚类-回归数据分析可视化(源码+数据)【独一无二】

简介: 【python】商业数据聚类-回归数据分析可视化(源码+数据)【独一无二】

一、设计目的

使用python实现商业竞标数据的分析和预测。包括两个主要部分:


1.聚类分析(Cluster Analysis):

  • 通过使用K均值聚类算法对商业竞标数据进行聚类,根据竞标者的倾向、竞标比率和早期竞标等因素将竞标者分成不同的群体(簇)。
  • 使用散点图可视化聚类结果,以便直观地观察不同簇之间的区别和相似性。


2.回归分析(Regression Analysis):

  • 使用线性回归模型建立胜率(Win Rate)与竞标者倾向、竞标比率和早期竞标之间的关系。
  • 利用实际数据对模型进行训练,并对胜率进行预测。
  • 使用折线图将实际胜率与预测胜率进行对比,以评估模型的准确性和效果。


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 商聚 ” 获取。👈👈👈


二、功能展示

1.聚类结果散点图:

  • 作用:提供了对商业竞标数据进行聚类的可视化展示,帮助观察不同簇之间的分布情况和特征差异。
  • 分析:通过散点图,可以直观地看出数据中竞标者倾向和竞标比率之间的关系,以及它们与早期竞标的变化趋势。不同颜色的点代表了不同的簇,有助于识别出数据中存在的潜在模式或群体。

adbfbea33dda4e26a96007a1b4957a29.png


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 商聚 ” 获取。👈👈👈


2.实际胜率与预测胜率对比图:

  • 作用:用于评估线性回归模型对胜率的预测效果,以及实际胜率与模型预测之间的偏差和趋势。
  • 分析:通过折线图,可以直观地比较模型预测的胜率与实际观测到的胜率。实际胜率与预测胜率的对比可以帮助我们评估模型的准确性和可靠性,进而确定模型是否能够有效地描述数据中的胜率变化趋势,以及是否存在预测偏差或模型拟合不足的情况。

2f517ffd6213450098c1a516f9381cd2.png


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 商聚 ” 获取。👈👈👈


代码分析

  1. 导入必要的库
  • 代码一开始导入了需要使用的库,包括pandas用于数据处理,numpy用于数值计算,sklearn用于聚类和回归分析,以及matplotlib.pyplot用于绘图。
import pandas as pd
import numpy as np
from sklearn.cluster import KMeans
from sklearn.linear_model import LinearRegression
import matplotlib.pyplot as plt

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 商聚 ” 获取。👈👈👈


  1. 读取数据
  • 使用pd.read_excel()函数读取Excel文件中的商业竞标数据,并将其转换为DataFrame格式。
plt.rcParams['font.sans-serif']=['SimHei'] 
plt.rcParams['axes.unicode_minus'] = False 
data = pd.read_excel("shill_bidding.xlsx", engine='openpyxl')


3.聚类分析

  • 利用KMeans算法对竞标数据进行聚类分析。指定聚类数目为3(n_clusters=3),并选择了"竞标者倾向"、"竞标比率"和"早期竞标"作为聚类的特征。
  • 将聚类结果标签添加到DataFrame中,以便后续可视化和分析。
# 代码略....
# 代码略....
# 代码略....
# 代码略....


4.绘制聚类结果散点图

  • 使用matplotlib.pyplot.scatter()函数绘制散点图,横坐标为"竞标者倾向",纵坐标为"竞标比率",颜色根据不同的聚类结果进行分类显示。
  • 添加标题、坐标轴标签和颜色图例,以便解释图表内容。
plt.figure(figsize=(10, 6))
# 略....
# 略....
# 略....
plt.xlabel('竞标者倾向')
plt.ylabel('竞标比率')
plt.colorbar(label='Cluster')
plt.show()

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 商聚 ” 获取。👈👈👈


5.回归分析

  • 使用线性回归模型拟合竞标数据,将"竞标者倾向"、"竞标比率"和"早期竞标"作为自变量,"胜率"作为因变量。
  • 使用LinearRegression()函数构建线性回归模型,并使用fit()方法进行模型训练。
# 代码略....
# 代码略....
# 代码略....
# 代码略....


6.绘制实际胜率与预测胜率对比图

  • 使用matplotlib.pyplot.plot()函数绘制折线图,横坐标为数据的索引,纵坐标为实际胜率和模型预测的胜率。
  • 将实际胜率和预测胜率分别用实线和虚线表示,以便进行对比分析。
  • 添加标题、坐标轴标签和图例,方便理解图表内容和结果。
# 绘制实际胜率与预测胜率的对比图
plt.figure(figsize=(10, 6))
# 略....
plt.xlabel('Index')
plt.ylabel('Win Rate')
plt.legend()
plt.show()


👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 商聚 ” 获取。👈👈👈

相关文章
|
3天前
|
机器学习/深度学习 数据采集 算法
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
有多种方法可以处理时间序列数据中的噪声。本文将介绍一种在我们的研究项目中表现良好的方法,特别适用于时间序列概况中数据点较少的情况。
16 1
数据稀缺条件下的时间序列微分:符号回归(Symbolic Regression)方法介绍与Python示例
|
6天前
|
算法 Python
揭秘!Python数据魔术师如何玩转线性回归,让你的预测精准到不可思议
【9月更文挑战第13天】在数据科学领域,线性回归以其优雅而强大的特性,将复杂的数据关系转化为精准的预测模型。本文将揭秘Python数据魔术师如何利用这一统计方法,实现令人惊叹的预测精度。线性回归假设自变量与因变量间存在线性关系,通过拟合直线或超平面进行预测。Python的scikit-learn库提供了简便的LinearRegression类,使模型构建、训练和预测变得简单直接。
20 5
|
7天前
|
数据采集 传感器 数据可视化
利用Python进行数据分析与可视化
【9月更文挑战第11天】在数字化时代,数据已成为企业决策和科学研究的关键。本文将引导读者了解如何使用Python这一强大的工具进行数据分析和可视化,帮助初学者理解数据处理的流程,并掌握基本的可视化技术。通过实际案例,我们将展示如何从原始数据中提取信息,进行清洗、处理,最终以图形方式展现结果,使复杂的数据变得直观易懂。
|
8天前
|
存储 算法 测试技术
预见未来?Python线性回归算法:数据中的秘密预言家
【9月更文挑战第11天】在数据的海洋中,线性回归算法犹如智慧的预言家,助我们揭示未知。本案例通过收集房屋面积、距市中心距离等数据,利用Python的pandas和scikit-learn库构建房价预测模型。经过训练与测试,模型展现出较好的预测能力,均方根误差(RMSE)低,帮助房地产投资者做出更明智决策。尽管现实关系复杂多变,线性回归仍提供了有效工具,引领我们在数据世界中自信前行。
23 5
|
8天前
|
机器学习/深度学习 数据挖掘 TensorFlow
🔍揭秘Python数据分析奥秘,TensorFlow助力解锁数据背后的亿万商机
【9月更文挑战第11天】在信息爆炸的时代,数据如沉睡的宝藏,等待发掘。Python以简洁的语法和丰富的库生态成为数据分析的首选,而TensorFlow则为深度学习赋能,助你洞察数据核心,解锁商机。通过Pandas库,我们可以轻松处理结构化数据,进行统计分析和可视化;TensorFlow则能构建复杂的神经网络模型,捕捉非线性关系,提升预测准确性。两者的结合,让你在商业竞争中脱颖而出,把握市场脉搏,释放数据的无限价值。以下是使用Pandas进行简单数据分析的示例:
22 5
|
8天前
|
存储 安全 算法
RSA在手,安全我有!Python加密解密技术,让你的数据密码坚不可摧
【9月更文挑战第11天】在数字化时代,信息安全至关重要。传统的加密方法已难以应对日益复杂的网络攻击。RSA加密算法凭借其强大的安全性和广泛的应用场景,成为保护敏感数据的首选。本文介绍RSA的基本原理及在Python中的实现方法,并探讨其优势与挑战。通过使用PyCryptodome库,我们展示了RSA加密解密的完整流程,帮助读者理解如何利用RSA为数据提供安全保障。
23 5
|
7天前
|
机器学习/深度学习 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的入门指南
【9月更文挑战第11天】本文旨在为初学者提供一条清晰的道路,通过Python探索数据科学的奇妙世界。我们将从基础语法讲起,逐步深入到数据处理、可视化以及机器学习等高级话题。文章不仅分享理论知识,还将通过实际代码示例,展示如何应用这些知识解决实际问题。无论你是编程新手,还是希望扩展技能的数据分析师,这篇文章都将是你宝贵的资源。
|
4月前
|
机器学习/深度学习 存储 数据可视化
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
数据分享|Python在Scikit-Learn可视化随机森林中的决策树分析房价数据
|
4月前
|
传感器 数据可视化 BI
python研究汽车传感器数据统计可视化分析
python研究汽车传感器数据统计可视化分析
|
4月前
|
自然语言处理 数据可视化 数据挖掘
数据代码分享|Python对全球Covid-19疫情失业数据相关性、可视化分析
数据代码分享|Python对全球Covid-19疫情失业数据相关性、可视化分析