DataWorks产品使用合集之怎么选择Doris或StarRocks作为DataWorks的OLAP解决方案

本文涉及的产品
大数据开发治理平台DataWorks,资源组抵扣包 750CU*H
简介: DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。

问题一:我看DataWorks有RestAPI数据源,但是是不是只支持固定入参?


我看DataWorks有RestAPI数据源,但是是不是只支持固定入参,以及支不支持对入参、出参加解密?


参考回答:

对 确实是用RestAPI,可以使用调度参数 但是同步任务不能加密解密


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/593116



问题二:请教一下DataWorks,doris和starRocks 选型,选哪个?


请教一下DataWorks,doris和starRocks 选型,选哪个?


参考回答:

选择Doris或StarRocks作为DataWorks的OLAP解决方案,取决于您的具体需求和场景。以下是两者的对比分析:

  1. 性能:StarRocks在某些版本中的性能优于Doris,特别是在向量化优化方面。StarRocks 3.0版本在2023年推出,而Apache Doris的最新稳定版本是2.0.0。如果您关注最新的性能优化和功能,StarRocks可能是更好的选择。
  2. 兼容性:StarRocks需要JDK 11环境,因为JDK 11的垃圾回收性能更好。而Doris的兼容性信息未明确提及。如果您的环境中已经部署了JDK 11,那么StarRocks可能在兼容性方面更符合要求。
  3. 授权协议:Apache Doris遵循Apache License协议,而StarRocks则是由SelectDB公司维护的商业产品。如果您倾向于使用开源解决方案,Doris可能更适合您的需求。
  4. 社区和支持:Doris和StarRocks都源自百度Palo项目,但它们的发展和社区支持有所不同。考虑到社区活跃度和问题解决速度,您可以进一步调研两个项目的社区情况,以判断哪个更适合您的团队。
  5. 功能和使用场景:StarRocks提供了MPP框架和向量化执行引擎,适合进行多维分析和灵活的模型配置。而Doris的功能和使用场景也需要根据最新的版本进行评估。

综上所述,您可以根据上述几点来决定选择Doris还是StarRocks。如果需要最新的性能优化和对JDK 11的支持,StarRocks可能是更合适的选择。如果您更倾向于开源解决方案和Apache License协议,Doris可能更适合您的需求。此外,还需要考虑团队的技术栈、社区支持和特定功能需求等因素。建议您根据实际业务需求和技术偏好,进行更深入的调研和测试,以便做出最合适的选型决策。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/593114



问题三:DataWorks分区表的全量数据 导出到hologres的话 数据集成该如何设置?


DataWorks分区表的全量数据 导出到hologres的话 数据集成该如何设置?


参考回答:

要将DataWorks分区表的全量数据导出到Hologres,您可以按照以下步骤进行数据集成设置:

  1. 准备工作:确保您已经购买并开通了Hologres实例,并且已经开通了MaxCompute以及创建了DataWorks工作空间。同时,确认您使用的Hologres版本是否被DataWorks支持。
  2. 创建目标表:在Hologres中创建目标分区表。由于目前仅支持将数据写入分区表的子表,您可以为每个分表创建一个对应的Hologres子表。创建语句可以参考:CREATE TABLE IF NOT EXISTS holo_sale_detail (shop_name TEXT, customer_id TEXT, total_price FLOAT8, sale_date TEXT) PARTITION BY LIST (sale_date);
  3. 数据同步任务:在DataWorks中创建数据同步任务,将MySQL的全量数据一次性同步至Hologres。在同步任务中,选择源端分表数据写入目标单表,并为写入的Hologres表添加统一前缀。
  4. 实时增量同步:设置实时增量同步任务,以便将后续的数据变化实时写入Hologres的目标表中。这可以通过DataWorks的数据集成功能来实现,确保数据的实时更新。

此外,在进行数据同步时,需要注意DataWorks对Hologres数据同步的能力支持情况,以及确保MaxCompute租户级别或项目级别未开通Schema服务。

总之,完成以上步骤后,您应该能够实现DataWorks分区表的全量数据导出到Hologres的需求。建议在操作前详细阅读相关文档和注意事项,以确保数据同步的准确性和效率。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/593113



问题四:DataWorks数据集成 是否可以导出 分区表的全量数据?


DataWorks数据集成 是否可以导出 分区表的全量数据?


参考回答:

是的,DataWorks数据集成可以导出分区表的全量数据

DataWorks作为一个大数据开发治理平台,提供了丰富的数据同步能力,包括实时数据同步、离线全量同步等。具体到分区表的全量数据导出,DataWorks支持以下几种方式:

  • 自动建表与全量同步:在设置数据同步任务时,可以选择是否需要在实时同步前将全量数据同步至目标端。如果开启全量同步,那么对应的表将会进行离线全量同步。
  • 调度参数与增量数据写入:通过结合DataWorks的调度参数,可以实现增量数据和全量数据的周期性写入目标表的对应分区。这种方式适用于需要定期将数据同步到特定分区的场景。
  • 离线同步功能:DataWorks的数据集成离线同步功能提供了数据读取(Reader)和写入插件(Writer),方便用户定义来源与去向数据源,并将源端数据库中的全量或增量数据同步至目标数据库中。
  • 定时自动合并写入:DataWorks支持全量数据初始化后,将增量数据实时写入,并且可以定时自动将增量数据和全量数据合并写入新的全量表分区。

综上所述,DataWorks提供了灵活的数据同步方案,可以根据不同的业务需求选择合适的同步方式。在实际业务场景中,数据同步的配置可能会比较复杂,需要根据具体情况进行详细的规划和设置。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/593112



问题五:请教下DataWorks,我现在有个场景,一个 polar db 有上万个数据库,有什么好的方案吗?


请教下DataWorks,我现在有个场景,一个 polar db 有上万个数据库,需要把每个库一些同名表同步到 mc,有什么好的方案吗?


参考回答:

在DataWorks中,您可以使用数据集成功能将PolarDB中的数据库同步到MaxCompute。针对您提到的有上万个数据库需要同步的场景,以下是一些建议的步骤和方案:

  1. 准备工作
  • 确保您已经在DataWorks中创建了相应的项目。
  • 在MaxCompute中建立好集群,并在DataWorks中准备好MaxCompute的数据源。
  1. 批量同步
  • 对于大量的数据库同步,您可以考虑编写脚本或使用DataWorks的批量操作功能来自动化创建同步任务。这样可以提高效率,避免手动逐一设置。
  1. 动态调整
  • 如果您的租户场景中数据库数量会不断变化,您可以在DataWorks中使用调度参数和增量数据写入策略来实现动态调整。通过这种方式,新的数据库可以自动添加到同步任务中,无需手动干预。
  1. 配置同步任务
  • 您可以选择通过向导模式或脚本模式配置同步任务。向导模式适合新手用户,而脚本模式则提供了更多的灵活性和自定义选项。
  1. 测试与监控
  • 在正式执行大规模同步之前,建议先进行小规模的测试,确保同步任务能够正确执行。
  • 同步开始后,使用DataWorks的监控功能来跟踪同步任务的状态和性能,确保数据的准确性和同步的及时性。

综上所述,您可以通过以上步骤来实现PolarDB到MaxCompute的大规模数据同步。建议您根据实际业务需求和数据量大小,选择合适的同步策略和工具,以确保数据同步的高效性和可靠性。如果遇到具体问题,可以进一步咨询DataWorks的技术支持获取帮助。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/593109

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
一站式大数据开发治理平台DataWorks初级课程
DataWorks 从 2009 年开始,十ー年里一直支持阿里巴巴集团内部数据中台的建设,2019 年双 11 稳定支撑每日千万级的任务调度。每天阿里巴巴内部有数万名数据和算法工程师正在使用DataWorks,承了阿里巴巴 99%的据业务构建。本课程主要介绍了阿里巴巴大数据技术发展历程与 DataWorks 几大模块的基本能力。 产品官网 https://www.aliyun.com/product/bigdata/ide 大数据&AI体验馆 https://workbench.data.aliyun.com/experience.htm#/ 帮助文档https://help.aliyun.com/zh/dataworks 课程目标  通过讲师的详细讲解与实际演示,学员可以一边学习一边进行实际操作,可以深入了解DataWorks各大模块的使用方式和具体功能,让学员对DataWorks数据集成、开发、分析、运维、安全、治理等方面有深刻的了解,加深对阿里云大数据产品体系的理解与认识。 适合人群  企业数据仓库开发人员  大数据平台开发人员  数据分析师  大数据运维人员  对于大数据平台、数据中台产品感兴趣的开发者
目录
打赏
0
0
0
0
643
分享
相关文章
StarRocks 原理详解:探索高效 OLAP 的奥秘
StarRocks 是一款高性能分析型数据仓库,采用向量化、MPP架构、CBO等技术,实现多维、实时、高并发的数据分析。它支持从各类数据源高效导入数据,兼容MySQL协议,并具备水平扩展、高可用等特性,广泛应用于实时数仓、OLAP报表等场景。StarRocks 解决了传统数仓在查询性能、数据导入、扩展性和灵活性等方面的挑战,助力企业实现数据驱动的决策。其分布式架构和智能物化视图等功能显著提升了查询效率,适用于大数据生态中的各种复杂需求。
278 15
Flink基于Paimon的实时湖仓解决方案的演进
本文整理自阿里云智能集团苏轩楠老师在Flink Forward Asia 2024论坛的分享,涵盖流式湖仓架构的背景介绍、技术演进和未来发展规划。背景部分介绍了ODS、DWD、DWS三层数据架构及关键组件Flink与Paimon的作用;技术演进讨论了全量与增量数据处理优化、宽表构建及Compaction操作的改进;发展规划则展望了Range Partition、Materialized Table等新功能的应用前景。通过这些优化,系统不仅简化了复杂度,还提升了实时与离线处理的灵活性和效率。
188 3
Flink基于Paimon的实时湖仓解决方案的演进
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
Apache Doris 提出“数据无界”和“湖仓无界”理念,提供高效的数据管理方案。本文聚焦三个典型应用场景:湖仓分析加速、多源联邦分析、湖仓数据处理,深入介绍 Apache Doris 的最佳实践,帮助企业快速响应业务需求,提升数据处理和分析效率
数据无界、湖仓无界,Apache Doris 湖仓一体典型场景实战指南(下篇)
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
湖仓一体架构融合了数据湖的低成本、高扩展性,以及数据仓库的高性能、强数据治理能力,高效应对大数据时代的挑战。为助力企业实现湖仓一体的建设,Apache Doris 提出了数据无界和湖仓无界核心理念,并结合自身特性,助力企业加速从 0 到 1 构建湖仓体系,降低转型过程中的风险和成本。本文将对湖仓一体演进及 Apache Doris 湖仓一体方案进行介绍。
数据无界、湖仓无界, Apache Doris 湖仓一体解决方案全面解读(上篇)
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
浙江霖梓早期基于 Apache Doris 进行整体架构与表结构的重构,并基于湖仓一体和查询加速展开深度探索与实践,打造了 Doris + Paimon 的实时/离线一体化湖仓架构,实现查询提速 30 倍、资源成本节省 67% 等显著成效。
湖仓分析|浙江霖梓基于 Doris + Paimon 打造实时/离线一体化湖仓架构
EMR Serverless StarRocks 全面升级:重新定义实时湖仓分析
本文介绍了EMR Serverless StarRocks的发展路径及其架构演进。首先回顾了Serverless Spark在EMR中的发展,并指出2021年9月StarRocks开源后,OLAP引擎迅速向其靠拢。随后,EMR引入StarRocks并推出全托管产品,至2023年8月商业化,已有500家客户使用,覆盖20多个行业。 文章重点阐述了EMR Serverless StarRocks 1.0的存算一体架构,包括健康诊断、SQL调优和物化视图等核心功能。接着分析了存算一体架构的挑战,如湖访问不优雅、资源隔离不足及冷热数据分层困难等。
湖仓融合:MaxComputee与Hologres基于OpenLake的湖上解决方案
本次主题探讨湖仓融合:MaxCompute与Hologres基于OpenLake的湖上解决方案。首先从数据湖和数据仓库的历史及业界解决方案出发,分析湖仓融合的两种思路;接着针对国内问题,介绍阿里云如何通过MaxCompute和Hologres解决湖仓融合中的挑战,特别是在非结构化数据处理方面的能力。最后,重点讲解Object Table为湖仓增添了SQL生态的非结构化数据处理能力,提升数据处理效率和安全性,使用户能够在云端灵活处理各类数据。
方案实践测评 | DataWorks集成Hologres构建一站式高性能的OLAP数据分析
DataWorks在任务开发便捷性、任务运行速度、产品使用门槛等方面都表现出色。在数据处理场景方面仍有改进和扩展的空间,通过引入更多的智能技术、扩展数据源支持、优化任务调度和可视化功能以及提升团队协作效率,DataWorks将能够为企业提供更全面、更高效的数据处理解决方案。
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
阿里云OpenLake解决方案建立在开放可控的OpenLake湖仓之上,提供大数据搜索与AI一体化服务。通过元数据管理平台DLF管理结构化、半结构化和非结构化数据,提供湖仓数据表和文件的安全访问及IO加速,并支持大数据、搜索和AI多引擎对接。本文为您介绍以Flink作为Openlake方案的核心计算引擎,通过流式数据湖仓Paimon(使用DLF 2.0存储)和EMR StarRocks搭建流式湖仓。
653 5
基于OpenLake的Flink+Paimon+EMR StarRocks流式湖仓分析
DataWorks on EMR StarRocks,打造标准湖仓新范式
本文整理自阿里云计算平台产品专家周硕(簌篱)在阿里云DataWorks on EMR StarRocks解决方案介绍中的分享。介绍了阿里云DataWorks与EMR Serverless StarRocks的结合使用,详细阐述了在数据同步、数据消费、数据治理三大场景中的核心能力。DataWorks作为大数据开发治理平台,提供了从数据建模、数据集成、数据开发到数据治理的全链路解决方案,结合StarRocks的高性能分析能力,帮助企业实现OLAP分析、湖仓一体开发及数据综合治理,满足复杂业务场景下的需求,提升数据处理和分析效率。

热门文章

最新文章

相关产品

  • 大数据开发治理平台 DataWorks
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等