Ray是一个开源的分布式计算框架,用于构建和扩展分布式应用。它提供了简单的API,使得开发者可以轻松地编写并行和分布式代码,而无需担心底层的复杂性。

本文涉及的产品
应用实时监控服务-用户体验监控,每月100OCU免费额度
应用实时监控服务-应用监控,每月50GB免费额度
性能测试 PTS,5000VUM额度
简介: Ray是一个开源的分布式计算框架,用于构建和扩展分布式应用。它提供了简单的API,使得开发者可以轻松地编写并行和分布式代码,而无需担心底层的复杂性。

一、Ray分布式计算框架简介

Ray是一个开源的分布式计算框架,用于构建和扩展分布式应用。它提供了简单的API,使得开发者可以轻松地编写并行和分布式代码,而无需担心底层的复杂性。Ray支持多种编程范式,包括任务并行、Actor模型、分布式对象存储等。

二、Ray的安装

首先,确保你的Python环境已经安装,并且可以通过pip安装Ray。在命令行中执行以下命令:

pip install ray
AI 代码解读

三、Ray的基本使用

1. 初始化Ray集群

使用Ray之前,需要初始化Ray集群。这可以通过调用ray.init()函数来完成。如果只在本地机器上运行,可以简单地调用ray.init()而不带任何参数。

import ray

# 初始化Ray集群
ray.init()
AI 代码解读

ray.init()`函数还可以接受一些参数来配置集群,例如指定节点地址、端口号等。但在本地开发时,通常不需要这些参数。

2. 定义远程函数

Ray允许你定义远程函数(Remote Functions),这些函数可以在集群中的任何节点上执行。要使用远程函数,你需要使用ray.remote()装饰器来装饰你的函数。

import ray

# 使用ray.remote()装饰器定义远程函数
@ray.remote
def add(x, y):
    return x + y
AI 代码解读

在这个例子中,我们定义了一个简单的远程函数add,它接受两个参数xy,并返回它们的和。由于这个函数被ray.remote()装饰器装饰了,所以它可以在Ray集群中的任何节点上执行。

3. 调用远程函数

要调用远程函数,你需要使用.remote()方法(注意不是装饰器)。这个方法会立即返回一个对象,这个对象表示远程函数的调用。要获取远程函数的返回值,你需要对这个对象调用.result()方法。

# 调用远程函数add,并传入参数1和2
result_id = add.remote(1, 2)

# 等待远程函数执行完成,并获取返回值
result = ray.get(result_id)
print(result)  # 输出:3
AI 代码解读

在这个例子中,我们首先调用了远程函数add,并传入参数1和2。由于add是一个远程函数,所以add.remote(1, 2)会立即返回一个对象result_id,这个对象表示远程函数的调用。然后,我们使用ray.get(result_id)来等待远程函数执行完成,并获取返回值。最后,我们打印出返回值,它应该是3。

四、Ray的高级特性

除了基本的远程函数调用之外,Ray还支持许多高级特性,例如Actor模型、分布式对象存储等。这些特性使得Ray可以处理更复杂的分布式应用。

1. Actor模型

Actor模型是一种并发编程模型,它允许你在集群中的节点上创建和管理状态。在Ray中,你可以使用ray.remote(actor=True)来定义Actor类。Actor类可以包含状态和方法,并且可以在集群中的任何节点上创建实例。

import ray

# 使用ray.remote(actor=True)定义Actor类
@ray.remote(actor=True)
class Counter:
    def __init__(self):
        self.value = 0

    def increment(self):
        self.value += 1
        return self.value

# 创建Counter的远程实例
counter = Counter.remote()

# 调用Counter的increment方法,并获取返回值
result_id = counter.increment.remote()
result = ray.get(result_id)
print(result)  # 输出:1
AI 代码解读

在这个例子中,我们定义了一个简单的Actor类Counter,它包含一个状态变量value和一个方法increment。然后,我们创建了Counter的远程实例counter,并调用了它的increment方法。由于increment方法会修改counter的状态,所以它是一个Actor方法。最后,我们打印出increment方法的返回值,它应该是1。

2. 分布式对象存储

Ray还提供了一个分布式对象存储系统,用于在集群中存储和共享数据。你可以使用ray.put()函数将数据存储在Ray的对象存储中,并使用ray.get()函数从对象存储中获取数据。这些数据可以在集群中的任何节点上访问和
处理结果:

一、Ray分布式计算框架简介

Ray是一个开源的分布式计算框架,用于构建和扩展分布式应用。它提供了简单的API,使得开发者可以轻松地编写并行和分布式代码,而无需担心底层的复杂性。Ray支持多种编程范式,包括任务并行、Actor模型、分布式对象存储等。

二、Ray的安装

首先,确保你的Python环境已经安装,并且可以通过pip安装Ray。在命令行中执行以下命令:
```bash

1. 初始化Ray集群

使用Ray之前,需要初始化Ray集群。这可以通过调用ray.init()函数来完成。如果只在本地机器上运行,可以简单地调用ray.init()而不带任何参数。
```python

初始化Ray集群

2. 定义远程函数

Ray允许你定义远程函数(Remote Functions),这些函数可以在集群中的任何节点上执行。要使用远程函数,你需要使用ray.remote()装饰器来装饰你的函数。
```python

使用ray.remote()装饰器定义远程函数

return x + y

3. 调用远程函数

要调用远程函数,你需要使用.remote()方法(注意不是装饰器)。这个方法会立即返回一个对象,这个对象表示远程函数的调用。要获取远程函数的返回值,你需要对这个对象调用.result()方法。
```python

等待远程函数执行完成,并获取返回值

四、Ray的高级特性

除了基本的远程函数调用之外,Ray还支持许多高级特性,例如Actor模型、分布式对象存储等。这些特性使得Ray可以处理更复杂的分布式应用。

1. Actor模型

Actor模型是一种并发编程模型,它允许你在集群中的节点上创建和管理状态。在Ray中,你可以使用ray.remote(actor=True)来定义Actor类。Actor类可以包含状态和方法,并且可以在集群中的任何节点上创建实例。
```python

使用ray.remote(actor=True)定义Actor类

def init(self)
self.value = 0
def increment(self)

self.value += 1
return self.value

创建Counter的远程实例

调用Counter的increment方法,并获取返回值

2. 分布式对象存储

Ray还提供了一个分布式对象存储系统,用于在集群中存储和共享数据。你可以使用ray.put()函数将数据存储在Ray的对象存储中,并使用ray.get()函数从对象存储中获取数据。这些数据可以在集群中的任何节点上访问和

相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
目录
打赏
0
11
11
0
88
分享
相关文章
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
分布式爬虫框架Scrapy-Redis实战指南
常见的分布式定时任务调度框架
分布式定时任务调度框架用于在分布式系统中管理和调度定时任务,确保任务按预定时间和频率执行。其核心概念包括Job(任务)、Trigger(触发器)、Executor(执行器)和Scheduler(调度器)。这类框架应具备任务管理、任务监控、良好的可扩展性和高可用性等功能。常用的Java生态中的分布式任务调度框架有Quartz Scheduler、ElasticJob和XXL-JOB。
1447 66
DeepSeek进阶开发与应用4:DeepSeek中的分布式训练技术
随着深度学习模型和数据集规模的扩大,单机训练已无法满足需求,分布式训练技术应运而生。DeepSeek框架支持数据并行和模型并行两种模式,通过将计算任务分配到多个节点上并行执行,显著提高训练效率。本文介绍DeepSeek中的分布式训练技术,包括配置与启动方法,帮助用户轻松实现大规模模型训练。数据并行通过`MirroredStrategy`同步梯度,适用于大多数模型;模型并行则通过`ParameterServerStrategy`异步处理大模型。DeepSeek简化了分布式环境配置,支持单机多卡和多机多卡等场景。
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
138 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
MaxFrame 产品评测:大数据与AI融合的Python分布式计算框架
MaxFrame是阿里云MaxCompute推出的自研Python分布式计算框架,支持大规模数据处理与AI应用。它提供类似Pandas的API,简化开发流程,并兼容多种机器学习库,加速模型训练前的数据准备。MaxFrame融合大数据和AI,提升效率、促进协作、增强创新能力。尽管初次配置稍显复杂,但其强大的功能集、性能优化及开放性使其成为现代企业与研究机构的理想选择。未来有望进一步简化使用门槛并加强社区建设。
222 7
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
156 2
1688API最新指南:商品详情接口接入与应用
本指南介绍1688商品详情接口的接入与应用,该接口可获取商品标题、价格、规格、库存等详细信息,适用于电商平台开发、数据分析等场景。接口通过商品唯一标识查询,支持HTTP GET/POST请求,返回JSON格式数据,助力开发者高效利用1688海量商品资源。
京东API接口最新指南:店铺所有商品接口的接入与使用
本文介绍京东店铺商品数据接口的应用与功能。通过该接口,商家可自动化获取店铺内所有商品的详细信息,包括基本信息、销售数据及库存状态等,为营销策略制定提供数据支持。此接口采用HTTP请求(GET/POST),需携带店铺ID和授权令牌等参数,返回JSON格式数据,便于解析处理。这对于电商运营、数据分析及竞品研究具有重要价值。
1688商品数据实战:API搜索接口开发与供应链分析应用
本文详细介绍了如何通过1688开放API实现商品数据的获取与应用,涵盖接入准备、签名流程、数据解析存储及商业化场景。开发者可完成智能选品、价格监控和供应商评级等功能,同时提供代码示例与问题解决方案,确保法律合规与数据安全。适合企业开发者快速构建供应链管理系统。
京东API最新指南:商品视频接口接入与应用
在电商领域,商品视频能有效提升销售业绩。京东商品视频接口助力开发者获取商品视频信息(播放链接、时长、格式、封面图等),通过 HTTP GET/POST 请求返回 JSON 数据,便于集成到各类应用中,优化展示效果与用户体验。本指南详解接口接入与使用方法。

云原生

+关注
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等