Python实现支持向量机SVM分类模型(SVC算法)并应用网格搜索算法调优项目实战

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: Python实现支持向量机SVM分类模型(SVC算法)并应用网格搜索算法调优项目实战

说明:这是一个机器学习实战项目(附带数据+代码+文档+视频讲解),如需数据+代码+文档+视频讲解可以直接到文章最后获取。

image.png

image.png

1.项目背景

目前各大新闻网站很多,网站上的消息也是各式各样,本项目通过建立支持向量机分类模型进行新闻文本分类。

本项目使用SVC算法来解决分类问题。

2.数据获取

本次建模数据来源于网络(本项目撰写人整理而成),数据项统计如下

新闻文本数据包含四类新闻,分别用0,1,2,3 表示;数据集包含训练集和测试集。

数据详情如下(部分展示):

image.png

image.png

image.png

3.数据预处理

3.1 用Pandas工具查看数据

使用Pandas工具的head()方法查看前五行数据:

image.png

关键代码:

image.png

3.2 统计每种新闻类型的数量

使用Pandas工具的grougby()方法统计每种新闻类型的数量:

image.png

从图中可以看到,类别为0的有987条数据,类别为1的有1436条数据,类别为2的有790条数据,类别为3的有263条数据。

4.探索性数据分析

4.1 词频柱状图

image.png

从图中可以看到,出现此频率最多的是:评论、中国、足球、体育等词。

4.2 词云图

image.png

通过上图可以看到,分词出现频率比较高是评论、皮肤、女性、中国、新浪、腾讯等,其中一些分词可以根据具体业务需要放入停用词中。

 

5.特征工程

5.1 文本向量化

image.png

上图中,括号内的代表文本行和分词索引,后面的代表词频逆文档频率。

关键代码:

image.png

 

5.2 构建特征和标签与数据集拆分

关键代码如下:

image.png

 

 

6.构建支持向量机分类模型

主要使用SVC算法,用于目标分类。

6.1 默认参数模型构建

image.png

从上图可以看到,支持向量机分类模型的准确率为0.9118,,F1分值为0.9024,默认参数构建的模型效果不错。

关键代码:

image.png

6.2 模型调优:应用网格搜索寻找最优参数值

使用网格搜索算法来寻找最优的参数值:

image.png

从上图可以看到,C参数最优值为10,gamma参数最优值为0.1

 

关键参数代码:

image.png  

6.3 最优参数建模

 

 

编号

模型名称

参数

1

SVM分类模型

C=10

2

gamma=0.1

 

7.模型评估 

7.1评估指标及结果

评估指标主要包括准确率、查准率、召回率、F1分值等等。 

模型名称

指标名称

指标值

测试集

SVM分类模型

准确率

0.9059

查准率

0.9195

召回率

0.9059

F1分值

0.9055

从上表可以看出,SVM分类模型比较优秀,效果非常好。

7.2 查看是否过拟合

查看训练集和测试集的分数:

image.png

通过结果可以看到,训练集分数和测试集分数基本一致,说明未过拟合。

关键代码:

image.png

7.3 混淆矩阵

SVM分类模型混淆矩阵:

 

image.png

从上图可以看到,实际值为0预测不为0的有5个;实际值为1预测不为1的有5个;实际值为2预测不为2的有6个;实际值为3预测不为3的有0个;这些是预测错误的,和总的测试集样本相比,错误预测还是相比对少的,在可接受的范围内。

7.4 分类报告

SVM分类模型分类报告:

image.png

从上图可以看到,分类类型为0的F1分值为0.80;分类类型为1的F1分值为0.94;分类类型为2的F1分值为0.90;分类类型为3的F1分值为0.77;整个模型的准确率为0.91

8.结论与展望

综上所述,本项目采用了SVM分类模型,最终证明了我们提出的模型效果良好。

# 本次机器学习项目实战所需的资料,项目资源如下:
 
# 项目说明:
 
# 获取方式一:
 
# 项目实战合集导航:
 
https://docs.qq.com/sheet/DTVd0Y2NNQUlWcmd6?tab=BB08J2
 
# 获取方式二:
 
链接:https://pan.baidu.com/s/101Ccg2mBJ4bSf7R0_Fn5sQ 
提取码:lybv
相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2月前
|
算法 数据可视化 数据挖掘
基于EM期望最大化算法的GMM参数估计与三维数据分类系统python源码
本内容展示了基于EM算法的高斯混合模型(GMM)聚类实现,包含完整Python代码、运行效果图及理论解析。程序使用三维数据进行演示,涵盖误差计算、模型参数更新、结果可视化等关键步骤,并附有详细注释与操作视频,适合学习EM算法与GMM模型的原理及应用。
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
62 1
|
2月前
|
存储 监控 算法
基于 Python 跳表算法的局域网网络监控软件动态数据索引优化策略研究
局域网网络监控软件需高效处理终端行为数据,跳表作为一种基于概率平衡的动态数据结构,具备高效的插入、删除与查询性能(平均时间复杂度为O(log n)),适用于高频数据写入和随机查询场景。本文深入解析跳表原理,探讨其在局域网监控中的适配性,并提供基于Python的完整实现方案,优化终端会话管理,提升系统响应性能。
72 4
|
3月前
|
PyTorch 算法框架/工具 C++
人工智能算法python程序运行环境安装步骤整理
本教程详细介绍Python与AI开发环境的配置步骤,涵盖软件下载、VS2017安装、Anaconda配置、PyCharm设置及组件安装等内容,适用于Windows系统,助你快速搭建开发环境。
|
2月前
|
存储 搜索推荐 算法
加密算法、排序算法、字符串处理及搜索算法详解
本文涵盖四大类核心技术知识。加密算法部分介绍了对称加密(如 AES)、非对称加密(如 RSA)、哈希摘要(如 SHA-2)、签名算法的特点及密码存储方案(加盐、BCrypt 等)。 排序算法部分分类讲解了比较排序(冒泡、选择、插入、归并、快排、堆排序)和非比较排序(计数、桶、基数排序)的时间复杂度、适用场景及实现思路,强调混合排序的工业应用。 字符串处理部分包括字符串反转的双指针法,及项目中用正则进行表单校验、网页爬取、日志处理的实例。 搜索算法部分详解了二分查找的实现(双指针与中间索引计算)和回溯算法的概念(递归 + 剪枝),以 N 皇后问题为例说明回溯应用。内容全面覆盖算法原理与实践
122 0
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于Qlearning强化学习的机器人迷宫路线搜索算法matlab仿真
本内容展示了基于Q-learning算法的机器人迷宫路径搜索仿真及其实现过程。通过Matlab2022a进行仿真,结果以图形形式呈现,无水印(附图1-4)。算法理论部分介绍了Q-learning的核心概念,包括智能体、环境、状态、动作和奖励,以及Q表的构建与更新方法。具体实现中,将迷宫抽象为二维网格世界,定义起点和终点,利用Q-learning训练机器人找到最优路径。核心程序代码实现了多轮训练、累计奖励值与Q值的可视化,并展示了机器人从起点到终点的路径规划过程。
117 0
|
26天前
|
机器学习/深度学习 算法 新能源
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
【优化调度】基于matlab粒子群算法求解水火电经济调度优化问题研究(Matlab代码实现)
|
28天前
|
算法 机器人 定位技术
基于机器视觉和Dijkstra算法的平面建筑群地图路线规划matlab仿真
本程序基于机器视觉与Dijkstra算法,实现平面建筑群地图的路径规划。通过MATLAB 2022A读取地图图像,识别障碍物并进行路径搜索,支持鼠标选择起点与终点,最终显示最优路径及长度,适用于智能导航与机器人路径规划场景。
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的XGBoost时间序列预测算法matlab仿真
本程序基于Matlab 2024b实现,结合粒子群优化(PSO)与XGBoost算法,用于时间序列预测。通过PSO优化XGBoost超参数,提升预测精度。程序包含完整注释与操作视频,运行后生成预测效果图及性能评估指标RMSE。
|
26天前
|
传感器 并行计算 算法
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
【无人机编队】基于非支配排序遗传算法II NSGA-II高效可行的无人机离线集群仿真研究(Matlab代码实现)
115 3

推荐镜像

更多