【网络编程入门】TCP与UDP通信实战:从零构建服务器与客户端对话(附简易源码,新手友好!)

简介: 在了解他们之前我们首先要知道网络模型,它分为两种,一种是OSI,一种是TCP/IP,当然他们的模型图是不同的,如下

 目录

网络模型:

OSI

TCP/IP

区别:

但是大家是不是会好奇为什么他们是有链接和无连接的呢?

三次握手和四次挥手

概念:

流程:

三次握手(Three-Way Handshake)

四次挥手(Four-Way Handshake)

个人讲解:


网络模型:

在了解他们之前我们首先要知道网络模型,它分为两种,一种是OSI,一种是TCP/IP,当然他们的模型图是不同的,如下

OSI

image.gif 编辑

TCP/IP

image.gif 编辑

区别:

共同点:他们都是在传输层的一种通信方式

不同点:

TCP是一个可靠有链接的通信协议,一般会被运用在重要数据的传输中,例如:QQ文件的传输,如果中间出现问题则会重新开始。

UDP则是一个不可靠无连接的通信协议,也就是无论对方收没收到消息,我这边都会一直发送,例如:QQ的视频通话,我们会出现网卡的情况,这种可以理解为我发送过去了,但是对方因为网络原因收不到,从而卡顿。

但是大家是不是会好奇为什么他们是有链接和无连接的呢?

这时候可以提出三次握手四次挥手的概念,这是TCP独有的,所以它是有链接的。

三次握手和四次挥手

概念:

三次握手和四次挥手是TCP(传输控制协议)连接建立和断开过程中两个关键的步骤,它们确保了数据传输的可靠性与有序性。

流程:

三次握手(Three-Way Handshake)

三次握手是TCP连接建立的过程,目的是初始化序列号、同步通信双方的序列号以及确认双方的接收和发送能力。过程如下:

  1. 第一次握手:客户端发送一个带有SYN(同步序列编号,Synchronize)标志的TCP报文给服务器,请求建立连接。这个报文中会包含客户端选择的初始序列号(ISN,Initial Sequence Number)。
  2. 第二次握手:服务器接收到客户端的SYN报文后,会发送一个SYN报文作为应答,这个报文包含服务器的初始序列号和一个对客户端SYN报文的ACK(确认)响应,即SYN/ACK报文。这意味着服务器同意建立连接,并确认收到了客户端的SYN。
  3. 第三次握手:客户端收到服务器的SYN/ACK报文后,会发送一个ACK报文给服务器,确认收到了服务器的SYN报文。至此,TCP连接建立完成,双方可以开始数据传输。

四次挥手(Four-Way Handshake)

四次挥手是TCP连接断开的过程,确保数据传输完毕后优雅地结束连接,避免数据丢失。过程如下:

  1. 第一次挥手:客户端发送一个FIN(结束,Finish)标志的TCP报文给服务器,表示客户端没有数据要发送了,请求关闭连接。
  2. 第二次挥手:服务器接收到FIN报文后,会发送一个ACK报文给客户端,确认收到了客户端的关闭请求,但此时服务器可能还有数据要发送给客户端,所以连接并未立即关闭。
  3. 第三次挥手:服务器发送完数据后,会向客户端发送一个FIN报文,表明服务器也没有数据要发送了,请求关闭连接。
  4. 第四次挥手:客户端收到服务器的FIN报文后,发送ACK报文给服务器,确认收到了服务器的关闭请求。服务器接收到这个ACK后,会关闭连接。客户端在一段时间的等待(TIME_WAIT状态)后,如果没有数据重传,也会关闭连接。

三次握手和四次挥手是TCP协议确保数据传输可靠性和连接管理的重要机制,确保了在复杂的网络环境下数据的有序传输和连接的正确建立与终止。

个人讲解:

在TCP中,客户端连接上服务器时会给服务器发送一条消息,此时服务器会给客户端回复一条确认消息,又叫ACK,并且同时跟着发过去的还会有一条消息,也就是确认消息和聊天消息时一起的,客户端收到后会再发送一个确认包给服务器,代表他接收到了。

四次挥手跟上面的流程大体时一样的,只不过确认包换成了挥手包,且第二次一起的聊天消息和挥手包分开了。

为什么会分开呢?

因为在断开连接时服务器可能还没有把所有的数据发送给客户端,从而导致出错,此时如果服务器的数据没有发送完就会一直发送挥手包,直到数据发送完成后才客户端才去给服务器再发一次挥手包。

如图:

image.gif 编辑

image.gif 编辑

模拟的场景有很多,大家可以自行发挥~

接下来就是TCP/UDP的通信流程,

流程大概时不会变的,所以我这里跟大家简单说一下。

服务器

TCP普通:

1.创建套接字

2.填充结构体

3.绑定IP和端口

4.监听

5.挂起等待条件 注意这里accept的函数是(sockfd,(struct sockaddr*)&caddr,&len(len = sizeof(caddr)));

6.循环接受        recv(acceptfd,buf,sizeof(buf),0)

UDP普通:

1.创建套接字

2.填充结构体

3.绑定IP和端口

4.循环接受(recvfrom)

客户端

TCP普通:

1.创建套接字

2.填充结构体

3.连接

4.收发操作

UDP普通:

1.创建套接字

2.填充结构体

4.收发操作

源码附下~:

//1.服务器
#include <arpa/inet.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char const *argv[])
{
    //1.创建套接字
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd < 0)
    {
        perror("soclfd error\n");
        return -1;
    }
    printf("sockfd is %d\n", sockfd);
    //2.填充结构体
    struct sockaddr_in saddr, caddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(atoi(argv[1]));
    saddr.sin_addr.s_addr = inet_addr("0.0.0.0");
    //3.绑定端口和IP
    if (bind(sockfd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
    {
        perror("bind error\n");
        return -1;
    }
    //4.监听
    if (listen(sockfd, 5) < 0)
    {
        perror("listen error\n");
        return -1;
    }
    //5.挂起接受客户端传来的协议
    while (1)
    {
        int len = sizeof(caddr);
        int acceptfd = accept(sockfd, (struct sockaddr *)&caddr, &len);
        if (acceptfd < 0)
        {
            perror("acceptfd error\n");
            return -1;
        }
        printf("client ip = %s port = %d\n", inet_ntoa(caddr.sin_addr), ntohs(caddr.sin_port));
        char buf[32] = " ";
        while (1)
        {
            int recvfd = recv(acceptfd, buf, sizeof(buf), 0);
            if (recvfd < 0)
            {
                perror("recvfd error\n");
                return -1;
            }
            else if (recvfd == 0)
            {
                printf("客户端已关闭\n");
                break;
            }
            else if (strcmp(buf, "quit") == 0)
            {
                break;
            }
            else
            {
                printf("acceptfd is %s\n", buf);
            }
        }
        close(acceptfd);
    }
    close(sockfd);
    return 0;
}
//2. 客户端
#include <arpa/inet.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char const *argv[])
{
    //1.创建套接字
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd < 0)
    {
        perror("soclfd error\n");
        return -1;
    }
    printf("sockfd is %d\n", sockfd);
    //2.填充结构体
    struct sockaddr_in saddr, caddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(atoi(argv[2]));
    saddr.sin_addr.s_addr = inet_addr(argv[1]);
    //3.链接
    if (connect(sockfd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
    {
        perror("connecting error\n");
        return -1;
    }
    char buf[32] = " ";
    //4.循环发送
    while (1)
    {
        fgets(buf, sizeof(buf), stdin);
        if (buf[strlen(buf) - 1] == '\n')
            buf[strlen(buf) - 1] = '\0';
        send(sockfd, buf, sizeof(buf), 0);
        if (strcmp(buf, "quit") == 0)
        {
            break;
        }
    }
    close(sockfd);
    return 0;
}

image.gif

UDP

//1.服务器
#include <stdio.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <stdlib.h>
int main(int argc, char const *argv[])
{
    //1.创建套接字
    int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    if (sockfd < 0)
    {
        perror("sockfd is error");
    }
    //2.填充结构体
    struct sockaddr_in saddr, caddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(atoi(argv[1]));
    saddr.sin_addr.s_addr = inet_addr("0.0.0.0");
    //3.??????Ip UDP?????????
    if (bind(sockfd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
    {
        perror("bind error\n");
        return -1;
    }
    char buf[32] = " ";
    // 循环接受
    while (1)
    {
        int len = sizeof(caddr);
        int recvfromfd = recvfrom(sockfd, buf, sizeof(buf), 0, (struct sockaddr *)&caddr, &len);//UDP的接受函数接口
        if (recvfromfd < 0)
        {
            perror("recvfromfd error\n");
            return -1;
        }
        else
        {
            printf("client is : %s\n", buf);
            printf("client IP  is %s  port is %d\n", inet_ntoa(caddr.sin_addr), ntohs(caddr.sin_port));
        }
        
    }
    
    close(sockfd);
    return 0;
}
//2. 客户端
#include <stdio.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <fcntl.h>
int main(int argc, char const *argv[])
{
    //1.创建套接字
    int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    if (sockfd < 0)
    {
        perror("sockfd is error");
    }
    //2.填充结构体
    struct sockaddr_in caddr;
    caddr.sin_family = AF_INET;
    caddr.sin_port = htons(atoi(argv[2]));
    caddr.sin_addr.s_addr = inet_addr(argv[1]);
    // 客户端这里是非必要绑定端口和IP
    char buf[32] = " ";
    int len = sizeof(caddr);
    while (1)
    {
        fgets(buf, sizeof(buf), stdin);
        if (buf[strlen(buf) - 1] == '\n')
            buf[strlen(buf) - 1] = '\0';
        //UDP的发送
        sendto(sockfd, buf, sizeof(buf), 0, (struct sockaddr *)&caddr, len);
    }
    close(sockfd);
    return 0;
}

image.gif


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
15天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
59 6
|
8天前
|
网络协议 SEO
TCP连接管理与UDP协议IP协议与ethernet协议
TCP、UDP、IP和Ethernet协议是网络通信的基石,各自负责不同的功能和层次。TCP通过三次握手和四次挥手实现可靠的连接管理,适用于需要数据完整性的场景;UDP提供不可靠的传输服务,适用于低延迟要求的实时通信;IP协议负责数据包的寻址和路由,是网络层的重要协议;Ethernet协议定义了局域网的数据帧传输方式,广泛应用于局域网设备之间的通信。理解这些协议的工作原理和应用场景,有助于设计和维护高效可靠的网络系统。
19 4
|
14天前
|
缓存 负载均衡 网络协议
面试:TCP、UDP如何解决丢包问题
TCP、UDP如何解决丢包问题。TCP:基于数据块传输/数据分片、对失序数据包重新排序以及去重、流量控制(滑动窗口)、拥塞控制、自主重传ARQ;UDP:程序执行后马上开始监听、控制报文大小、每个分割块的长度小于MTU
|
16天前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
39 4
|
16天前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
38 1
|
17天前
|
网络协议 安全 NoSQL
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
|
15天前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
28 0
|
5天前
|
机器学习/深度学习 人工智能 弹性计算
什么是阿里云GPU云服务器?GPU服务器优势、使用和租赁费用整理
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等多种场景。作为亚太领先的云服务提供商,阿里云的GPU云服务器具备灵活的资源配置、高安全性和易用性,支持多种计费模式,帮助企业高效应对计算密集型任务。
|
7天前
|
存储 分布式计算 固态存储
阿里云2核16G、4核32G、8核64G配置云服务器租用收费标准与活动价格参考
2核16G、8核64G、4核32G配置的云服务器处理器与内存比为1:8,这种配比的云服务器一般适用于数据分析与挖掘,Hadoop、Spark集群和数据库,缓存等内存密集型场景,因此,多为企业级用户选择。目前2核16G配置按量收费最低收费标准为0.54元/小时,按月租用标准收费标准为260.44元/1个月。4核32G配置的阿里云服务器按量收费标准最低为1.08元/小时,按月租用标准收费标准为520.88元/1个月。8核64G配置的阿里云服务器按量收费标准最低为2.17元/小时,按月租用标准收费标准为1041.77元/1个月。本文介绍这些配置的最新租用收费标准与活动价格情况,以供参考。
|
5天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云GPU服务器全解析_GPU价格收费标准_GPU优势和使用说明
阿里云GPU云服务器提供强大的GPU算力,适用于深度学习、科学计算、图形可视化和视频处理等场景。作为亚太领先的云服务商,阿里云GPU云服务器具备高灵活性、易用性、容灾备份、安全性和成本效益,支持多种实例规格,满足不同业务需求。