【网络编程入门】TCP与UDP通信实战:从零构建服务器与客户端对话(附简易源码,新手友好!)

简介: 在了解他们之前我们首先要知道网络模型,它分为两种,一种是OSI,一种是TCP/IP,当然他们的模型图是不同的,如下

 目录

网络模型:

OSI

TCP/IP

区别:

但是大家是不是会好奇为什么他们是有链接和无连接的呢?

三次握手和四次挥手

概念:

流程:

三次握手(Three-Way Handshake)

四次挥手(Four-Way Handshake)

个人讲解:


网络模型:

在了解他们之前我们首先要知道网络模型,它分为两种,一种是OSI,一种是TCP/IP,当然他们的模型图是不同的,如下

OSI

image.gif 编辑

TCP/IP

image.gif 编辑

区别:

共同点:他们都是在传输层的一种通信方式

不同点:

TCP是一个可靠有链接的通信协议,一般会被运用在重要数据的传输中,例如:QQ文件的传输,如果中间出现问题则会重新开始。

UDP则是一个不可靠无连接的通信协议,也就是无论对方收没收到消息,我这边都会一直发送,例如:QQ的视频通话,我们会出现网卡的情况,这种可以理解为我发送过去了,但是对方因为网络原因收不到,从而卡顿。

但是大家是不是会好奇为什么他们是有链接和无连接的呢?

这时候可以提出三次握手四次挥手的概念,这是TCP独有的,所以它是有链接的。

三次握手和四次挥手

概念:

三次握手和四次挥手是TCP(传输控制协议)连接建立和断开过程中两个关键的步骤,它们确保了数据传输的可靠性与有序性。

流程:

三次握手(Three-Way Handshake)

三次握手是TCP连接建立的过程,目的是初始化序列号、同步通信双方的序列号以及确认双方的接收和发送能力。过程如下:

  1. 第一次握手:客户端发送一个带有SYN(同步序列编号,Synchronize)标志的TCP报文给服务器,请求建立连接。这个报文中会包含客户端选择的初始序列号(ISN,Initial Sequence Number)。
  2. 第二次握手:服务器接收到客户端的SYN报文后,会发送一个SYN报文作为应答,这个报文包含服务器的初始序列号和一个对客户端SYN报文的ACK(确认)响应,即SYN/ACK报文。这意味着服务器同意建立连接,并确认收到了客户端的SYN。
  3. 第三次握手:客户端收到服务器的SYN/ACK报文后,会发送一个ACK报文给服务器,确认收到了服务器的SYN报文。至此,TCP连接建立完成,双方可以开始数据传输。

四次挥手(Four-Way Handshake)

四次挥手是TCP连接断开的过程,确保数据传输完毕后优雅地结束连接,避免数据丢失。过程如下:

  1. 第一次挥手:客户端发送一个FIN(结束,Finish)标志的TCP报文给服务器,表示客户端没有数据要发送了,请求关闭连接。
  2. 第二次挥手:服务器接收到FIN报文后,会发送一个ACK报文给客户端,确认收到了客户端的关闭请求,但此时服务器可能还有数据要发送给客户端,所以连接并未立即关闭。
  3. 第三次挥手:服务器发送完数据后,会向客户端发送一个FIN报文,表明服务器也没有数据要发送了,请求关闭连接。
  4. 第四次挥手:客户端收到服务器的FIN报文后,发送ACK报文给服务器,确认收到了服务器的关闭请求。服务器接收到这个ACK后,会关闭连接。客户端在一段时间的等待(TIME_WAIT状态)后,如果没有数据重传,也会关闭连接。

三次握手和四次挥手是TCP协议确保数据传输可靠性和连接管理的重要机制,确保了在复杂的网络环境下数据的有序传输和连接的正确建立与终止。

个人讲解:

在TCP中,客户端连接上服务器时会给服务器发送一条消息,此时服务器会给客户端回复一条确认消息,又叫ACK,并且同时跟着发过去的还会有一条消息,也就是确认消息和聊天消息时一起的,客户端收到后会再发送一个确认包给服务器,代表他接收到了。

四次挥手跟上面的流程大体时一样的,只不过确认包换成了挥手包,且第二次一起的聊天消息和挥手包分开了。

为什么会分开呢?

因为在断开连接时服务器可能还没有把所有的数据发送给客户端,从而导致出错,此时如果服务器的数据没有发送完就会一直发送挥手包,直到数据发送完成后才客户端才去给服务器再发一次挥手包。

如图:

image.gif 编辑

image.gif 编辑

模拟的场景有很多,大家可以自行发挥~

接下来就是TCP/UDP的通信流程,

流程大概时不会变的,所以我这里跟大家简单说一下。

服务器

TCP普通:

1.创建套接字

2.填充结构体

3.绑定IP和端口

4.监听

5.挂起等待条件 注意这里accept的函数是(sockfd,(struct sockaddr*)&caddr,&len(len = sizeof(caddr)));

6.循环接受        recv(acceptfd,buf,sizeof(buf),0)

UDP普通:

1.创建套接字

2.填充结构体

3.绑定IP和端口

4.循环接受(recvfrom)

客户端

TCP普通:

1.创建套接字

2.填充结构体

3.连接

4.收发操作

UDP普通:

1.创建套接字

2.填充结构体

4.收发操作

源码附下~:

//1.服务器
#include <arpa/inet.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char const *argv[])
{
    //1.创建套接字
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd < 0)
    {
        perror("soclfd error\n");
        return -1;
    }
    printf("sockfd is %d\n", sockfd);
    //2.填充结构体
    struct sockaddr_in saddr, caddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(atoi(argv[1]));
    saddr.sin_addr.s_addr = inet_addr("0.0.0.0");
    //3.绑定端口和IP
    if (bind(sockfd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
    {
        perror("bind error\n");
        return -1;
    }
    //4.监听
    if (listen(sockfd, 5) < 0)
    {
        perror("listen error\n");
        return -1;
    }
    //5.挂起接受客户端传来的协议
    while (1)
    {
        int len = sizeof(caddr);
        int acceptfd = accept(sockfd, (struct sockaddr *)&caddr, &len);
        if (acceptfd < 0)
        {
            perror("acceptfd error\n");
            return -1;
        }
        printf("client ip = %s port = %d\n", inet_ntoa(caddr.sin_addr), ntohs(caddr.sin_port));
        char buf[32] = " ";
        while (1)
        {
            int recvfd = recv(acceptfd, buf, sizeof(buf), 0);
            if (recvfd < 0)
            {
                perror("recvfd error\n");
                return -1;
            }
            else if (recvfd == 0)
            {
                printf("客户端已关闭\n");
                break;
            }
            else if (strcmp(buf, "quit") == 0)
            {
                break;
            }
            else
            {
                printf("acceptfd is %s\n", buf);
            }
        }
        close(acceptfd);
    }
    close(sockfd);
    return 0;
}
//2. 客户端
#include <arpa/inet.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <stdlib.h>
#include <string.h>
int main(int argc, char const *argv[])
{
    //1.创建套接字
    int sockfd = socket(AF_INET, SOCK_STREAM, 0);
    if (sockfd < 0)
    {
        perror("soclfd error\n");
        return -1;
    }
    printf("sockfd is %d\n", sockfd);
    //2.填充结构体
    struct sockaddr_in saddr, caddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(atoi(argv[2]));
    saddr.sin_addr.s_addr = inet_addr(argv[1]);
    //3.链接
    if (connect(sockfd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
    {
        perror("connecting error\n");
        return -1;
    }
    char buf[32] = " ";
    //4.循环发送
    while (1)
    {
        fgets(buf, sizeof(buf), stdin);
        if (buf[strlen(buf) - 1] == '\n')
            buf[strlen(buf) - 1] = '\0';
        send(sockfd, buf, sizeof(buf), 0);
        if (strcmp(buf, "quit") == 0)
        {
            break;
        }
    }
    close(sockfd);
    return 0;
}

image.gif

UDP

//1.服务器
#include <stdio.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <stdlib.h>
int main(int argc, char const *argv[])
{
    //1.创建套接字
    int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    if (sockfd < 0)
    {
        perror("sockfd is error");
    }
    //2.填充结构体
    struct sockaddr_in saddr, caddr;
    saddr.sin_family = AF_INET;
    saddr.sin_port = htons(atoi(argv[1]));
    saddr.sin_addr.s_addr = inet_addr("0.0.0.0");
    //3.??????Ip UDP?????????
    if (bind(sockfd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
    {
        perror("bind error\n");
        return -1;
    }
    char buf[32] = " ";
    // 循环接受
    while (1)
    {
        int len = sizeof(caddr);
        int recvfromfd = recvfrom(sockfd, buf, sizeof(buf), 0, (struct sockaddr *)&caddr, &len);//UDP的接受函数接口
        if (recvfromfd < 0)
        {
            perror("recvfromfd error\n");
            return -1;
        }
        else
        {
            printf("client is : %s\n", buf);
            printf("client IP  is %s  port is %d\n", inet_ntoa(caddr.sin_addr), ntohs(caddr.sin_port));
        }
        
    }
    
    close(sockfd);
    return 0;
}
//2. 客户端
#include <stdio.h>
#include <arpa/inet.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <fcntl.h>
int main(int argc, char const *argv[])
{
    //1.创建套接字
    int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    if (sockfd < 0)
    {
        perror("sockfd is error");
    }
    //2.填充结构体
    struct sockaddr_in caddr;
    caddr.sin_family = AF_INET;
    caddr.sin_port = htons(atoi(argv[2]));
    caddr.sin_addr.s_addr = inet_addr(argv[1]);
    // 客户端这里是非必要绑定端口和IP
    char buf[32] = " ";
    int len = sizeof(caddr);
    while (1)
    {
        fgets(buf, sizeof(buf), stdin);
        if (buf[strlen(buf) - 1] == '\n')
            buf[strlen(buf) - 1] = '\0';
        //UDP的发送
        sendto(sockfd, buf, sizeof(buf), 0, (struct sockaddr *)&caddr, len);
    }
    close(sockfd);
    return 0;
}

image.gif


相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
2天前
|
负载均衡 网络协议 算法
不为人知的网络编程(十九):能Ping通,TCP就一定能连接和通信吗?
这网络层就像搭积木一样,上层协议都是基于下层协议搭出来的。不管是ping(用了ICMP协议)还是tcp本质上都是基于网络层IP协议的数据包,而到了物理层,都是二进制01串,都走网卡发出去了。 如果网络环境没发生变化,目的地又一样,那按道理说他们走的网络路径应该是一样的,什么情况下会不同呢? 我们就从路由这个话题聊起吧。
18 4
不为人知的网络编程(十九):能Ping通,TCP就一定能连接和通信吗?
|
9天前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
46 2
|
1月前
|
消息中间件 编解码 网络协议
Netty从入门到精通:高性能网络编程的进阶之路
【11月更文挑战第17天】Netty是一个基于Java NIO(Non-blocking I/O)的高性能、异步事件驱动的网络应用框架。使用Netty,开发者可以快速、高效地开发可扩展的网络服务器和客户端程序。本文将带您从Netty的背景、业务场景、功能点、解决问题的关键、底层原理实现,到编写一个详细的Java示例,全面了解Netty,帮助您从入门到精通。
122 0
|
2月前
|
Web App开发 缓存 网络协议
不为人知的网络编程(十八):UDP比TCP高效?还真不一定!
熟悉网络编程的(尤其搞实时音视频聊天技术的)同学们都有个约定俗成的主观论调,一提起UDP和TCP,马上想到的是UDP没有TCP可靠,但UDP肯定比TCP高效。说到UDP比TCP高效,理由是什么呢?事实真是这样吗?跟着本文咱们一探究竟!
68 10
|
2月前
|
Java
[Java]Socket套接字(网络编程入门)
本文介绍了基于Java Socket实现的一对一和多对多聊天模式。一对一模式通过Server和Client类实现简单的消息收发;多对多模式则通过Server类维护客户端集合,并使用多线程实现实时消息广播。文章旨在帮助读者理解Socket的基本原理和应用。
33 1
|
3月前
|
域名解析 网络协议 应用服务中间件
网络编程入门如此简单(四):一文搞懂localhost和127.0.0.1
本文将以网络编程入门者视角,言简意赅地为你请清楚localhost和127.0.0.1的关系及区别等。
163 2
网络编程入门如此简单(四):一文搞懂localhost和127.0.0.1
|
3月前
|
数据安全/隐私保护
Haskell网络编程:代理服务器的高级使用技巧
Haskell网络编程:代理服务器的高级使用技巧
|
3月前
|
网络协议 C语言
C语言 网络编程(十一)TCP通信创建流程---服务端
在服务器流程中,新增了绑定IP地址与端口号、建立监听队列及接受连接并创建新文件描述符等步骤。`bind`函数用于绑定IP地址与端口,`listen`函数建立监听队列并设置监听状态,`accept`函数则接受连接请求并创建新的文件描述符用于数据传输。套接字状态包括关闭(CLOSED)、同步发送(SYN-SENT)、同步接收(SYN-RECEIVE)和已建立连接(ESTABLISHED)。示例代码展示了TCP服务端程序如何初始化socket、绑定地址、监听连接请求以及接收和发送数据。
|
3月前
|
网络协议 C语言
C语言 网络编程(十二)TCP通信创建-粘包
TCP通信中的“粘包”现象指的是由于协议特性,发送方的数据包被拆分并在接收方按序组装,导致多个数据包粘连或单个数据包分割。为避免粘包,可采用定长数据包或先传送数据长度再传送数据的方式。示例代码展示了通过在发送前添加数据长度信息,并在接收时先读取长度后读取数据的具体实现方法。此方案适用于长度不固定的数据传输场景。
|
5天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
42 17

热门文章

最新文章

下一篇
DataWorks