YOLOv11改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络

简介: YOLOv11改进策略【模型轻量化】| ShufflenetV2,通过通道划分构建高效网络

一、本文介绍

本文记录的是基于ShufflenetV2的YOLOv11目标检测轻量化改进方法研究FLOPs是评价模型复杂独的重要指标,但其无法考虑到模型的内存访问成本和并行度,因此本文在YOLOv11的基础上引入ShufflenetV2,==使其在在保持准确性的同时提高模型的运行效率==。

模型 参数量 计算量 推理速度
YOLOv11m 20.0M 67.6GFLOPs 3.5ms
Improved 15.5M 43.9GFLOPs 3.0ms

专栏目录:YOLOv11改进目录一览 | 涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进
专栏地址:YOLOv11改进专栏——以发表论文的角度,快速准确的找到有效涨点的创新点!

二、ShuffleNet V2设计原理

ShuffleNet V2是一种高效的卷积神经网络架构,其模型结构及优势如下:

2.1 模型结构

  • 回顾ShuffleNet v1ShuffleNet是一种广泛应用于低端设备的先进网络架构,为增加在给定计算预算下的特征通道数量,采用了点组卷积和瓶颈结构,但这增加了内存访问成本(MAC),且过多的组卷积和元素级“Add”操作也存在问题。
    • 引入Channel Split和ShuffleNet V2:为解决上述问题,引入了名为Channel Split的简单操作。在每个单元开始时,将$c$个特征通道的输入分为两个分支,分别具有$c - c'$和$c'$个通道。一个分支保持不变,另一个分支由三个具有相同输入和输出通道的卷积组成,以满足G1(平衡卷积,即相等的通道宽度可最小化MAC)。两个$1 \times 1$卷积不再是组式的,这部分是为了遵循G2(避免过多的组卷积增加MAC),部分是因为拆分操作已经产生了两个组。卷积后,两个分支连接,通道数量保持不变,并使用与ShuffleNet v1相同的“通道洗牌”操作来实现信息通信。对于空间下采样,单元进行了略微修改,删除了通道拆分操作,使输出通道数量加倍。
    • 整体网络结构:通过反复堆叠构建块来构建整个网络,设置$c' = c/2$,整体网络结构与ShuffleNet v1相似,并在全局平均池化之前添加了一个额外的$1 \times 1$卷积层来混合特征。

      2.2 优势

  • 高效且准确:遵循了高效网络设计的所有准则,每个构建块的高效率使其能够使用更多的特征通道和更大的网络容量,并且在每个块中,一半的特征通道直接通过块并加入下一个块,实现了一种特征重用模式,类似于DenseNet,但更高效。
    • 速度优势明显:在与其他网络架构的比较中,ShuffleNet v2在速度方面表现出色,特别是在GPU上明显快于其他网络(如MobileNet v2、ShuffleNet v1和Xception)。在ARM上,ShuffleNet v1、Xception和ShuffleNet v2的速度相当,但MobileNet v2较慢,这是因为MobileNet v2的MAC较高。
    • 兼容性好:可以与其他技术(如Squeeze - and - excitation模块)结合进一步提高性能。

论文:https://arxiv.org/pdf/1807.11164.pdf
源码:https://gitcode.com/gh_mirrors/sh/ShuffleNet-Series/blob/master/ShuffleNetV2/blocks.py?utm_source=csdn_github_accelerator&isLogin=1

三、实现代码及YOLOv11修改步骤

模块完整介绍、个人总结、实现代码、模块改进、二次创新以及各模型添加步骤参考如下地址:

https://blog.csdn.net/qq_42591591/article/details/142887671

目录
相关文章
|
4天前
|
JavaScript 算法 前端开发
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
16天前
|
人工智能 运维 API
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
云栖大会 | Terraform从入门到实践:快速构建你的第一张业务网络
|
18天前
|
云安全 人工智能 安全
构建云上安全共同体 | 阿里云亮相2024年(第十三届)电信和互联网行业网络安全年会
构建云上安全共同体 | 阿里云亮相2024年(第十三届)电信和互联网行业网络安全年会
|
19天前
|
云安全 人工智能 安全
阿里云网络安全体系解析:如何构建数字时代的"安全盾牌"
在数字经济时代,阿里云作为亚太地区最大的云服务提供商,构建了行业领先的网络安全体系。本文解析其网络安全架构的三大核心维度:基础架构安全、核心技术防护和安全管理体系。通过技术创新与体系化防御,阿里云为企业数字化转型提供坚实的安全屏障,确保数据安全与业务连续性。案例显示,某金融客户借助阿里云成功拦截3200万次攻击,降低运维成本40%,响应时间缩短至8分钟。未来,阿里云将继续推进自适应安全架构,助力企业提升核心竞争力。
|
21天前
|
人工智能 安全 网络安全
网络安全领导者有效缓解团队倦怠的四步策略
网络安全领导者有效缓解团队倦怠的四步策略
|
27天前
|
网络协议 测试技术 Linux
Golang 实现轻量、快速的基于 Reactor 模式的非阻塞 TCP 网络库
gev 是一个基于 epoll 和 kqueue 实现的高性能事件循环库,适用于 Linux 和 macOS(Windows 暂不支持)。它支持多核多线程、动态扩容的 Ring Buffer 读写缓冲区、异步读写和 SO_REUSEPORT 端口重用。gev 使用少量 goroutine,监听连接并处理读写事件。性能测试显示其在不同配置下表现优异。安装命令:`go get -u github.com/Allenxuxu/gev`。
|
1月前
|
机器学习/深度学习 计算机视觉
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
71 10
RT-DETR改进策略【Neck】| ECCV-2024 RCM 矩形自校准模块 优化颈部网络
|
1月前
|
机器学习/深度学习
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
RT-DETR改进策略【Neck】| GSConv+Slim Neck:混合深度可分离卷积和标准卷积的轻量化网络设计
66 11
|
3月前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
100 17
|
3月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。

热门文章

最新文章