【YOLOv8改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力

简介: YOLO目标检测专栏介绍了SimAM,一种无参数的CNN注意力模块,基于神经科学理论优化能量函数,提升模型表现。SimAM通过计算3D注意力权重增强特征表示,无需额外参数。文章提供论文链接、Pytorch实现代码及详细配置,展示了如何在目标检测任务中应用该模块。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

在本文中,我们提出了一种概念上简单但非常有效的卷积神经网络(ConvNets)注意力模块。与现有的通道注意力和空间注意力模块不同,我们的模块为特征图推断3D注意力权重,而无需向原始网络添加参数。具体来说,我们基于一些知名的神经科学理论,提出通过优化能量函数来找出每个神经元的重要性。我们进一步推导出一个快速的闭式解,并展示该解可以在不到十行代码中实现。该模块的另一个优点是大多数操作符是基于能量函数的解选择的,避免了大量结构调整的工作。对各种视觉任务的定量评估表明,所提出的模块灵活且有效,可以提高许多卷积神经网络的表示能力。我们的代码可在 Pytorch-SimAM 获取。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

SimAM(Simple Attention Module)是一种简单且无参数的注意力模块,用于卷积神经网络(Convolutional Neural Networks,ConvNets)。SimAM的设计灵感源自哺乳动物大脑中的神经科学理论,特别是基于已建立的空间抑制理论设计了一个能量函数来实现这一理论。SimAM通过推导出一个简单的解决方案来实现这个函数,进而将该函数作为特征图中每个神经元的注意力重要性。该注意力模块的实现受到这个能量函数的指导,避免了过多的启发式方法。SimAM通过推断特征图的3D注意力权重,优化能量函数以找到每个神经元的重要性,从而在各种视觉任务上提高性能。

  1. 基于空间抑制理论设计能量函数:SimAM利用空间抑制理论设计了一个能量函数,用于计算每个神经元的注意力重要性。
  2. 推导简单解决方案:为了实现这个能量函数,SimAM推导出了一个简单的解决方案,使得实现过程更加高效。
  3. 实现注意力权重:通过计算得到的注意力重要性,SimAM可以为每个神经元分配相应的注意力权重,从而提高特征图的表征能力。

    image-20240630164233027

SimAM 的计算公式如下:
$$ w_i = \frac{1}{k} \sum_{j \in N_i} s(f_i, f_j) $$


公式说明:

  • w_i 是第 i 个像素的注意力权重
  • k 是归一化常数
  • N_i 是第 i 个像素的相邻像素集合
  • s(f_i, f_j) 是第 i 个像素和第 j 个像素之间的相似性

核心代码

import torch
import torch.nn as nn

class SimAM(torch.nn.Module):
    def __init__(self, channels=None, e_lambda=1e-4):
        super(SimAM, self).__init__()

        # 初始化Sigmoid激活函数和e_lambda参数
        self.activation = nn.Sigmoid()  # Sigmoid激活函数用于映射输出到(0, 1)之间
        self.e_lambda = e_lambda  # 控制分母的平滑参数

    def __repr__(self):
        # 返回模型的字符串表示,包括e_lambda参数的值
        s = self.__class__.__name__ + '('
        s += ('lambda=%f)' % self.e_lambda)
        return s

    @staticmethod
    def get_module_name():
        # 静态方法,返回模型的名称
        return "simam"

    def forward(self, x):
        # 前向传播函数,接收输入张量x,返回处理后的张量

        b, c, h, w = x.size()  # 获取输入张量的batch大小、通道数、高度和宽度

        n = w * h - 1  # 计算像素数量减一,用于标准化

        # 计算每个像素与平均值的差的平方
        x_minus_mu_square = (x - x.mean(dim=[2, 3], keepdim=True)).pow(2)

        # 计算SimAM激活函数的输出
        # 分子部分:每个像素的平方差除以分母的加权平均
        # 加上0.5是为了映射输出到(0.5, 1)之间
        y = x_minus_mu_square / (4 * (x_minus_mu_square.sum(dim=[2, 3], keepdim=True) / n + self.e_lambda)) + 0.5

        # 返回经过SimAM激活函数处理后的特征图
        return x * self.activation(y)

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/140083301

相关文章
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
89 7
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
1月前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
7天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
45 17
|
17天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
18天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
40 10
|
20天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
46 10
|
20天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
21天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。