elasticsearch写入流程和请求检索流程原理全方位解析

本文涉及的产品
日志服务 SLS,月写入数据量 50GB 1个月
Elasticsearch Serverless通用抵扣包,测试体验金 200元
简介: elasticsearch写入流程和请求检索流程原理全方位解析

✍🏻序言✍🏻

在当今数据驱动的时代,能够快速、准确地存储和检索信息是企业成功的关键。Elasticsearch,作为一个分布式的、RESTful风格的搜索和分析引擎,以其强大的索引、搜索和聚合功能,成为众多企业和开发者的首选。其背后的读写流程,融合了高效的数据结构与先进的分布式系统原理,确保数据既能被可靠地存储,又能被迅速检索。

1️⃣✍🏻es的架构简介

首先,从架构的角度来看,Elasticsearch是一个分布式的搜索和分析引擎,它能够存储、搜索和分析大量数据。为了实现这些功能,Elasticsearch采用了分片和副本的机制,使得数据可以分布在多个节点上,并且具有容错性和可扩展性。简要介绍Elasticsearch的架构:

1. 分布式架构

  • 节点与集群:Elasticsearch由多个节点(Node)组成,这些节点可以组成一个集群(Cluster)。每个节点都可以处理读写请求,并且数据在集群中的节点之间进行分布和复制,以实现高可用性和扩展性。
  • 分片与副本:为了支持大规模数据,Elasticsearch将索引划分为多个分片(Shard),每个分片可以独立存储和处理数据。此外,每个分片可以有多个副本(Replica),用于提供数据冗余、故障恢复和读取负载均衡。

2. 索引与搜索

  • 倒排索引:Elasticsearch使用Lucene作为其底层的搜索库。Lucene构建倒排索引(Inverted Index)来加速搜索过程。倒排索引将文档中的单词映射到包含这些单词的文档列表,从而实现快速查找和检索。
  • 查询执行:当客户端发送搜索请求时,请求首先到达一个协调节点。协调节点解析查询语句,确定需要访问的分片,并将请求转发给相应的数据节点。数据节点在本地执行查询,并将结果返回给协调节点。协调节点聚合来自各个数据节点的结果,并进行排序、分页等处理,最终将结果返回给客户端。

3. 数据写入与持久化

写入流程:当文档被写入Elasticsearch时,它们首先被放置在内存中的一个缓冲区中,并同时记录到事务日志(Translog)中以确保数据的持久性。随着时间的推移或达到一定的条件,缓冲区中的数据会被刷新(Refresh)到Lucene的索引中,形成新的段(Segment)。这些段是不可变的,一旦被写入就不能被修改。最终,通过flush操作将内存中的数据以及Translog中的更改持久化到磁盘上。


段合并:为了优化存储和搜索性能,Lucene会定期进行段合并(Segment Merging)操作。合并过程中会将多个小的段合并成更大的段,并删除重复和已删除的文档以释放存储空间。

4. 缓存与性能优化

  • 查询缓存:Elasticsearch会对某些查询结果进行缓存以加速重复查询的响应速度。此外,还有分片请求缓存等机制用于减少不必要的计算和I/O操作。
  • 优化策略:为了提高性能,Elasticsearch还提供了多种优化策略,如使用合适的分析器(Analyzer)和查询语句、合理配置索引设置、利用聚合和过滤操作等。这些优化可以减少查询的复杂性和计算开销,提高查询速度和响应时间。

所以,Elasticsearch的架构结合了分布式处理、索引与搜索技术、数据写入与持久化机制以及缓存与性能优化策略等多个方面来实现高效、可靠的数据存储和检索功能。

2️⃣✍🏻es的数据写入流程与原理

在写入数据时,Elasticsearch遵循以下原理和步骤:

1. 客户端请求与协调节点

  • 客户端向Elasticsearch集群发送一个写入请求,这个请求可以发送到集群中的任何一个节点。
  • 接收到请求的节点会充当协调节点的角色。协调节点负责处理客户端的请求,并将请求路由到正确的数据节点。

2. 路由与主分片处理

  • 协调节点会根据文档的_id和索引的设置(如分片数量)来确定文档应该写入到哪个主分片。这是通过一个哈希函数和模运算来实现的,确保同一个_id的文档总是路由到同一个主分片。
  • 确定目标主分片后,协调节点将请求转发给该主分片所在的数据节点。
  • 数据节点上的主分片接收到请求后,会先将文档写入到内存中的Lucene索引结构里。这个过程包括将文档转换成倒排索引的形式,以便后续的搜索和分析。

3. 数据同步与副本分片

  • 一旦文档被写入到主分片,主分片会开始将数据同步到其对应的副本分片上。这是为了保证数据的冗余和可用性。
  • 副本分片是主分片的完整拷贝,它们可以处理搜索请求并提供数据恢复的能力。当主分片不可用时,副本分片可以被提升为新的主分片。
  • 数据同步是异步进行的,这意味着写入请求在主分片处理完毕后就可以返回给客户端,而不需要等待所有副本分片都完成同步。

4. 写入确认与响应

  • 当主分片和足够数量的副本分片(根据配置可能是全部或大多数)都成功写入了文档后,协调节点会收到这些分片的确认信息。
  • 一旦收到足够的确认信息,协调节点就会向客户端发送一个成功的响应,表示文档已经被成功写入。

在Elasticsearch中,底层写入机制是确保数据可靠、持久化并可以被高效搜索的关键部分:

5.1. 缓冲区(Buffer)和事务日志(Translog)
  • 当文档被写入Elasticsearch时,它们首先被放置在内存中的一个缓冲区中。这个缓冲区是临时的,用于快速接收并处理写入请求。
  • 同时,为了确保数据的持久性和可靠性,每一个写入操作也会被记录到事务日志(Translog)中。Translog是一个追加写入的日志文件,它记录了所有对索引的更改。这种机制类似于数据库中的写前日志(WAL)或重做日志(redo log),用于在系统崩溃后恢复数据。
5.2. 刷新(Refresh)操作
  • 随着时间的推移,缓冲区中的数据会积累到一定量,此时需要将这些数据刷新(refresh)到Lucene的索引中。刷新操作会创建一个新的Lucene段(segment),并将缓冲区中的数据写入这个段中。
  • Lucene段是不可变的,一旦被写入就不能被修改,这保证了数据的一致性和搜索的高效性。新的段会被添加到索引中,使得新写入的数据可以被搜索到。
  • 刷新操作是周期性的,可以通过配置来控制刷新的频率。频繁的刷新会提高数据的实时性,但也会增加I/O负担和CPU使用率;而较少的刷新则会减少I/O操作,但可能会降低数据的实时性。
5.3. Flush操作
  • 与刷新不同,flush操作会将内存中的数据以及Translog中的更改持久化到磁盘上。这意味着数据被真正写入到了物理存储中,而不仅仅是保存在操作系统的文件系统缓存中。
  • Flush操作会调用操作系统的fsync函数来确保数据被写入磁盘,并且会清空相关的缓存和文件(如Translog)。这样做可以释放内存空间,并为后续的写入操作做好准备。
  • Flush操作的频率通常比刷新操作要低得多,因为它涉及到磁盘I/O操作,相对较慢。但是,在Elasticsearch中,flush操作是自动管理的,会根据索引的大小、写入速率和磁盘I/O能力等因素来动态调整。

通过这个底层写入机制,Elasticsearch能够在保证数据可靠性的同时提供高效的搜索和分析功能。缓冲区、事务日志、刷新和flush操作共同协作,确保数据被正确、快速地写入到索引中,并可以被用户查询到。


基于以上这些原理和步骤,Elasticsearch能够实现高效、可靠和可扩展的数据写入功能。

3️⃣✍🏻es读取数据流程

下面来解释Elasticsearch读取数据的流程,包括其中的关键步骤和涉及的组件。

1. 客户端发送请求

  • 当用户想要从Elasticsearch中检索数据时,他们会通过Elasticsearch的客户端API发送一个搜索请求。这个请求包含了查询的详细信息,如要搜索的索引、查询类型(如匹配查询、范围查询等)、过滤条件等。

2. 请求到达协调节点

  • 请求首先到达Elasticsearch集群中的一个节点,这个节点被称为协调节点(Coordinating Node)。协调节点负责接收客户端的请求,处理请求的路由逻辑,并与数据节点(Data Node)进行通信以获取实际的数据。

3. 解析查询并确定目标分片

  • 协调节点接收到请求后,会解析查询语句,并根据索引的映射(Mapping)和设置(Settings)信息来确定需要查询哪些分片(Shard)。Elasticsearch中的每个索引都被分割成多个分片,并且这些分片可以分布在集群的多个节点上以提高可扩展性和性能。

4. 将请求转发给数据节点

  • 协调节点根据分片的位置信息将查询请求转发给包含目标分片的数据节点。每个数据节点上都存储着一部分索引的数据,并负责处理与这些数据相关的查询请求。

5. 在数据节点上执行查询

  • 数据节点接收到查询请求后,会使用Lucene库来执行实际的搜索操作。Lucene是一个高性能、全功能的文本搜索引擎库,它提供了强大的索引和搜索功能。数据节点会根据查询条件在Lucene索引中检索匹配的文档,并生成一个结果集。

6.聚合和排序结果

  • 数据节点将查询结果返回给协调节点。如果查询涉及多个分片,协调节点需要聚合来自不同分片的结果,并根据需要对结果进行排序、分页等处理。这个过程可能需要消耗一定的计算资源,特别是当结果集很大时。

7.返回结果给客户端

  • 一旦结果准备好,协调节点会将它们封装成一个统一的响应格式,并返回给客户端。响应中包含了查询的结果、匹配的文档数量、聚合数据(如果有的话)等信息。客户端可以解析这个响应来获取所需的数据。

缓存和优化策略

  • 查询缓存:Elasticsearch会对某些查询结果进行缓存,以便快速响应相同的查询请求。这可以减少对Lucene索引的重复访问,提高查询性能。然而,由于缓存空间有限,只有部分查询结果会被缓存。
  • 分片请求缓存:数据节点上的分片请求缓存可以存储查询请求的结果。当相同的查询再次到达时,可以直接从缓存中获取结果,而无需再次访问Lucene索引。这有助于减少对磁盘I/O的依赖,提高查询速度。
  • 优化查询语句:为了提高查询性能,用户应该编写高效的查询语句。避免使用高开销的查询操作(如通配符查询、正则表达式查询等),合理使用过滤器和聚合操作,以及优化索引结构都可以帮助提高查询速度。

基于这些详细的步骤和优化策略,Elasticsearch能够高效地处理读取数据的请求,并提供快速、准确的结果给用户。

4️⃣✍🏻总结

Elasticsearch的读写流程是一个精心设计的、分布式的处理过程。在写入数据时,它通过缓冲区、事务日志、刷新和flush操作等机制,确保了数据的可靠性与持久性。

同时,借助Lucene的强大索引能力,将文档快速转换成可被搜索的形式。在读取数据时,Elasticsearch利用协调节点将请求路由到正确的数据节点,利用Lucene进行高效检索,并聚合、排序结果,最终返回给客户端。这一流程结合了缓存、优化查询语句和分布式处理等技术,确保了查询的高性能与低延迟。通过这些设计,Elasticsearch为企业和开发者提供了强大而灵活的数据存储与检索解决方案。

相关文章
|
16天前
|
存储 域名解析 弹性计算
阿里云上云流程参考:云服务器+域名+备案+域名解析绑定,全流程图文详解
对于初次通过阿里云完成上云的企业和个人用户来说,很多用户不仅是需要选购云服务器,同时还需要注册域名以及完成备案和域名的解析相关流程,从而实现网站的上线。本文将以上云操作流程为核心,结合阿里云的活动政策与用户系统梳理云服务器选购、域名注册、备案申请及域名绑定四大关键环节,以供用户完成线上业务部署做出参考。
|
6月前
|
人工智能 自然语言处理 搜索推荐
ViDoRAG:开源多模态文档检索框架,多智能体推理+图文理解精准解析文档
ViDoRAG 是阿里巴巴通义实验室联合中国科学技术大学和上海交通大学推出的视觉文档检索增强生成框架,基于多智能体协作和动态迭代推理,显著提升复杂视觉文档的检索和生成效率。
328 8
ViDoRAG:开源多模态文档检索框架,多智能体推理+图文理解精准解析文档
|
6月前
|
机器学习/深度学习 数据可视化 PyTorch
深入解析图神经网络注意力机制:数学原理与可视化实现
本文深入解析了图神经网络(GNNs)中自注意力机制的内部运作原理,通过可视化和数学推导揭示其工作机制。文章采用“位置-转移图”概念框架,并使用NumPy实现代码示例,逐步拆解自注意力层的计算过程。文中详细展示了从节点特征矩阵、邻接矩阵到生成注意力权重的具体步骤,并通过四个类(GAL1至GAL4)模拟了整个计算流程。最终,结合实际PyTorch Geometric库中的代码,对比分析了核心逻辑,为理解GNN自注意力机制提供了清晰的学习路径。
482 7
深入解析图神经网络注意力机制:数学原理与可视化实现
|
6月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
804 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
6月前
|
监控 Shell Linux
Android调试终极指南:ADB安装+多设备连接+ANR日志抓取全流程解析,覆盖环境变量配置/多设备调试/ANR日志分析全流程,附Win/Mac/Linux三平台解决方案
ADB(Android Debug Bridge)是安卓开发中的重要工具,用于连接电脑与安卓设备,实现文件传输、应用管理、日志抓取等功能。本文介绍了 ADB 的基本概念、安装配置及常用命令。包括:1) 基本命令如 `adb version` 和 `adb devices`;2) 权限操作如 `adb root` 和 `adb shell`;3) APK 操作如安装、卸载应用;4) 文件传输如 `adb push` 和 `adb pull`;5) 日志记录如 `adb logcat`;6) 系统信息获取如屏幕截图和录屏。通过这些功能,用户可高效调试和管理安卓设备。
|
6月前
|
传感器 人工智能 监控
反向寻车系统怎么做?基本原理与系统组成解析
本文通过反向寻车系统的核心组成部分与技术分析,阐述反向寻车系统的工作原理,适用于适用于商场停车场、医院停车场及火车站停车场等。如需获取智慧停车场反向寻车技术方案前往文章最下方获取,如有项目合作及技术交流欢迎私信作者。
444 2
|
6月前
|
负载均衡 JavaScript 前端开发
分片上传技术全解析:原理、优势与应用(含简单实现源码)
分片上传通过将大文件分割成多个小的片段或块,然后并行或顺序地上传这些片段,从而提高上传效率和可靠性,特别适用于大文件的上传场景,尤其是在网络环境不佳时,分片上传能有效提高上传体验。 博客不应该只有代码和解决方案,重点应该在于给出解决方案的同时分享思维模式,只有思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
4月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
1988 0
|
5月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
855 1
|
10月前
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
397 5

推荐镜像

更多
  • DNS