机器学习场景的的任务

简介: 【6月更文挑战第14天】机器学习场景的的任务。

机器学习可以解决多种类型的任务,下面列出最典型的常见的几种:
分类:模型输出的是一个类别,类别为离散的数据类型。比如计算机视觉中的图像分类算法解决的就是一个分类任务。
回归:模型输出的是一个连续的数值。这类任务的一个示例是预测投保人的索赔金额(用于设置保险费),或者预测证券未来的价格。
聚类:对大量未知标注的数据,按数据的内在相似性,将数据划分为多个类别,同一类别内的数据相似度较大,而类别间的相似性比较小。可以被运用在图片检索,用户画像等场景中。
生成:这类任务中,输出的结果可以是向量,矩阵,序列等,输出结果中存在内在的关联。例如机器翻译和语音识别。
分类和回归是预测问题的两种主要类型,分类的输出是离散的类别值,而回归的输出是连续数值。
欠拟合:模型过于简单导致训练误差泛化误差大。
过拟合:训练得到的模型的训练误差很小,而泛化能力较弱即泛化误差较大。

相关文章
|
2月前
|
机器学习/深度学习 算法 Python
集成学习(上):机器学习基础task1-熟悉机器学习的三大主要任务
集成学习(上):机器学习基础task1-熟悉机器学习的三大主要任务
45 0
|
1月前
|
机器学习/深度学习 自动驾驶 机器人
【机器学习知识点】3. 目标检测任务中如何在图片上的目标位置绘制边界框
【机器学习知识点】3. 目标检测任务中如何在图片上的目标位置绘制边界框
|
20天前
|
API 开发工具 对象存储
在PAI平台上,如何实现不同编程语言任务之间的数据共享?
【7月更文挑战第1天】在PAI平台上,如何实现不同编程语言任务之间的数据共享?
101 58
|
20天前
|
自然语言处理 API 开发工具
PAI如何处理不同编程语言的混合任务?
【7月更文挑战第1天】PAI如何处理不同编程语言的混合任务?
94 57
|
1月前
|
机器学习/深度学习 人工智能 分布式计算
人工智能平台PAI产品使用合集之如何在odps上启动独立的任务
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
人工智能平台PAI产品使用合集之如何在odps上启动独立的任务
|
21天前
|
机器学习/深度学习 数据采集 存储
人工智能平台PAI产品使用合集之FeatureStore是否支持推荐场景下的session特征
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
29天前
|
机器学习/深度学习 数据采集 搜索推荐
机器学习多场景实战(一)
机器学习已广泛应用,从个性化推荐到金融风控,数据指标是评估其效果的关键。数据指标包括活跃用户(DAU, MAU, WAU)衡量用户粘性,新增用户量和注册转化率评估营销效果,留存率(次日、7日、30日)反映用户吸引力,行为指标如PV(页面浏览量)、UV(独立访客)和转化率分析用户行为。产品数据指标如GMV、ARPU、ARPPU和付费率关注业务变现,推广付费指标(CPM, CPC, CPA等)则关乎广告效率。找到北极星指标,如月销售额或用户留存,可指导业务发展。案例中涉及电商销售数据,计算月销售金额、环比、销量、新用户占比、激活率和留存率以评估业务表现。
|
29天前
|
机器学习/深度学习 搜索推荐 数据挖掘
机器学习多场景实战(二 )
这是一个关于机器学习应用于电商平台用户行为分析的概要,包括以下几个关键点: 1. **月活跃用户分析**:通过购买记录确定活跃用户,计算每月活跃用户数。 2. **月客单价**:定义为月度总销售额除以月活跃用户数,衡量平均每位活跃用户的消费金额。 3. **新用户占比**:基于用户首次购买和最近购买时间判断新老用户,计算每月新用户的购买比例。 4. **激活率计算**:定义为当月与上月都有购买行为的用户数占上月购买用户数的比例,反映用户留存情况。 5. **Pandas数据操作**:使用Pandas库进行数据集合并(concat和merge),以及计算不同维度的组合。
|
1月前
|
机器学习/深度学习 人工智能 Apache
人工智能平台PAI操作报错合集之alink任务可以在本地运行,上传到flink web运行就报错,如何解决
阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。
|
2月前
|
机器学习/深度学习 算法 数据处理
使用Python进行简单的机器学习任务
使用Python进行简单的机器学习任务
37 4

热门文章

最新文章