深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?

简介: 本文探讨了在深度学习和机器学习中针对非时间序列的回归任务的多种改进策略,包括数据预处理、数据集增强、特征选择、模型选择、模型正则化与泛化、优化器选择、学习率调整、超参数调优以及性能评估与模型解释,旨在提升模型的性能和可解释性。

深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?

在这里插入图片描述

目录

  • 深度学习和机器学习中针对非时间序列的回归任务,有哪些改进角度?
  • 引言
  • 1 数据预处理
  • 2 数据集增强
  • 3 特征选择
  • 4 模型选择
  • 5 模型正则化与泛化
  • 6 优化器
  • 7 学习率
  • 8 超参数调优
  • 9 性能评估与模型解释

引言

在非时间序列的回归任务中,深度学习和机器学习都是常用的方法。为了进一步提升模型的性能,可以通过改进数据处理、数据增强、特征选择、模型选择、模型正则化与泛化、优化器、学习率、超参数调优等方面,来提升模型的性能和可解释性。

1 数据预处理

提高数据质量和进行恰当的数据预处理对提升模型性能至关重要。

  1. 异常值处理:检测和处理异常值,防止对模型造成影响。
  2. 数据清洗:纠正在数据中的不一致性和错误。
  3. 处理不平衡数据:重采样策略,如SMOTE或随机过/欠采样。
  4. 缺失值处理:填补缺失值或使用模型处理缺失数据。
  5. 数据规范化:归一化或标准化数据。
  6. 数据离散化:对连续变量进行分桶操作。
  7. 特征编码:对类别型特征使用独热编码或标签编码。
  8. 多尺度特征:创建不同尺度的特征表示形式。
  9. 特征构造:创建新特征来增强现有数据集。
  10. 特征交互:考虑特征之间的交互作用。

2 数据集增强

通过生成合成数据或变形现有数据来拓展数据集,使模型能够从更多样的情况中学习。

  1. 数据扩张:人工生成新样本(基于已知样本特征的数据生成技术)。
  2. 过采样:复制少数类样本。
  3. 欠采样:减少多数类样本。
  4. 加权重采样:依据类的不平衡程度加权样本。
  5. 生成对抗网络(GAN):生成新的数据点增强数据集。
  6. 模拟数据生成:使用已知分布生成新数据点。
  7. 多样本合成:融合现有数据点生成新样本。
  8. 自动数据增强:使用算法来自动找到最优的数据增强方式。
  9. 交叉验证数据扩增:在交叉验证的每个循环中使用不同的数据增强。
  10. 引入外部数据集:结合其他资源扩展数据集。

3 特征选择

  1. 相关性分析:采用皮尔逊相关系数、斯皮尔曼等级相关系数等方法筛选与目标变量相关性高的特征。
  2. 主成分分析(PCA):减少维度,保留最有信息的特征分量。
  3. 特征重要性评分:基于树模型(如随机森林、XGBoost)评估特征重要性。
  4. 递归特征消除(RFE):递归减少特征集规模,找到最有影响的特征。
  5. 基于模型的选择:使用L1正则化(Lasso)自动进行特征选择。
  6. 群体方法(Ensemble methods):结合多种特征选择方法的结果。
  7. 互信息和最大信息系数(MIC):选取与目标变量互信息大的特征。
  8. 使用过滤方法:例如方差分析(ANOVA),通过统计测试进行特征选择。
  9. 时间序列特征工程:从日期中提取信息,如月份、星期等。
  10. 地理空间特征:如果数据包含地理信息,可以提取地理空间特征,如人口密度、流动性模式等。

4 模型选择

  1. 线性模型:逻辑回归、岭回归等,作为基线模型。
  2. 决策树:CART、ID3、C4.5作为非线性基准模型。
  3. 集成方法:随机森林、梯度提升机(GBM)、XGBoost、LightGBM、CatBoost等,提高模型的稳定性和准确性。
  4. 支持向量机(SVM):尝试不同的核函数。
  5. 神经网络:深度学习模型,能够捕获复杂非线性关系。
  6. K-最近邻(KNN):调整邻居数量。
  7. 朴素贝叶斯:对条件独立性假设下的快速模型。
  8. 实例学习方法:基于实例的学习可以用于捕捉异常点或进行小样本学习。
  9. 混合模型或堆叠(Stacking):结合多个不同的模型的预测以提高准确率。

5 模型正则化与泛化

正则化技术可以减少过拟合,提升模型的泛化能力。

  1. L1/L2正则化:加入惩罚项限制模型复杂度。
  2. 早停法(Early Stopping):防止训练过度。
  3. 丢弃法(Dropout):神经网络中随机丢弃节点以增加鲁棒性。
  4. 集成学习:多模型集成平均预测。
  5. 交叉验证:更可靠地评估模型表现。
  6. 堆叠通用化(Stacking Generalization):模型的堆叠组合。
  7. 引导聚合(Bagging):减少方差,如随机森林。
  8. 梯度提升:如GBM、XGBoost,增加模型鲁棒性。
  9. 噪声鲁棒性:对输入添加噪声以提高鲁棒性。
  10. 模型蒸馏(Knowledge Distillation):从复杂模型到简单模型的知识转移。

6 优化器

pytorch手册:https://pytorch.org/docs/stable/optim.html

  1. 梯度下降(GD):基础的优化算法。
  2. 随机梯度下降(SGD):每次更新只使用一个样本,速度快。
  3. 批量梯度下降(BGD):每次更新使用全部样本,稳定性好。
  4. 动量(Momentum):加速SGD在相关方向上前进,抑制震荡。
  5. Adagrad:自适应学习率优化算法。
  6. RMSprop:解决Adagrad学习率急剧下降问题。
  7. Adam:结合了RMSprop和Momentum的优点。
  8. AdaDelta:改进的Adagrad以防止学习率过早下降。
  9. Nesterov 加速梯度(NAG):提前调整梯度方向以增加速度。
  10. AdamW:在Adam的基础上加入权重衰减,提高模型泛化能力。

7 学习率

学习率的调整对模型训练效果影响巨大,以下是一些调整学习率的方法:

  1. 固定学习率:最基本的策略,全程使用固定学习率。
  2. 按时间衰减:随着迭代次数增加,学习率逐渐减小。
  3. 步长衰减:每隔一定的epoch,学习率衰减一次。
  4. 指数衰减:学习率按指数函数衰减。
  5. 自适应学习率:根据模型在训练集上的表现来动态调整学习率。
  6. 余弦退火(Cosine Annealing):周期性调整学习率的一种策略。
  7. 线性预热(Warm-up):先小学习率预热,逐渐增加到正常值。
  8. 周期性学习率:学习率在较高值和较低值之间周期性变动。
  9. 学习率范围测试:快速地迭代多个学习率以找到最好的范围。
  10. 使用学习率查找算法:例如学习率查找器,快速找到适合当前数据集的学习率。

8 超参数调优

通过调整模型超参数来优化模型表现。

  1. 网格搜索:系统性地遍历多种超参数的组合。
  2. 随机搜索:在超参数空间中随机搜索。
  3. 贝叶斯优化:基于贝叶斯模型的优化方法。
  4. 基于遗传算法的优化:模拟自然选择过程来选择超参数。
  5. 模拟退火:启发式搜索技术,优化复杂空间中的超参数选择。
  6. 超参数空间约减:通过预先分析减少搜索空间的范围。
  7. 自动化机器学习(AutoML):自动化超参数的选择和模型的训练。
  8. 超参数重要性分析:分析各个超参数对模型表现的影响大小。
  9. 进化算法:利用进化策略寻找最佳超参数。
  10. 零成本代理指标:使用低成本指标来预测较高成本指标的表现。

9 性能评估与模型解释

了解模型在哪些方面表现良好或不足,可以进一步改进模型。

  1. 混淆矩阵分析:查看模型在不同类别的预测性能。
  2. ROC曲线与AUC:评估模型的区分能力。
  3. 精度-召回曲线:了解精度与召回率的权衡关系。
  4. Brier分数:评估概率预测的准确性。
  5. 查看模型权重:分析特征权重对结果的影响。
  6. SHAP值:解释模型的预测以关联特征的重要性。
  7. 部分依赖图(Partial Dependence Plots):可视化特征影响。
  8. 局部可解释模型的敏感性分析(LIME):解释单个预测结果。
  9. 累积增益图和提升图:分析营销策略效果。
  10. 泛化误差分析:分析模型在新数据上的预测性能。
目录
相关文章
|
2月前
|
机器学习/深度学习 数据采集 人工智能
《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3
这篇文章详细介绍了如何使用线性回归算法实现波士顿房价预测任务,包括数据读取、形状变换、集划分、归一化处理、模型设计、前向计算以及损失函数的计算等步骤,并提供了相应的Python代码实现。
 《零基础实践深度学习》基于线性回归实现波士顿房价预测任务1.3.3
|
14天前
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
43 6
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
2天前
|
机器学习/深度学习 存储 自然语言处理
深度学习之任务序列中的快速适应
基于深度学习的任务序列中的快速适应是指模型在接连处理不同任务时,能够迅速调整和优化自身以适应新任务的能力。这种能力在动态环境和多任务学习中尤为重要,旨在减少训练时间和资源需求。
12 3
|
23天前
|
机器学习/深度学习 人工智能 算法
操作系统的未来:从多任务到深度学习的演变之路
本文将探讨操作系统如何从处理简单多任务发展到支持复杂的深度学习任务。我们将分析现代操作系统面临的新挑战,以及它们如何适应人工智能和大数据时代的要求。文章不仅回顾过去,也展望未来,思考操作系统在技术演进中的角色和方向。
33 3
|
2月前
|
机器学习/深度学习 算法 前端开发
《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
使用Numpy实现梯度下降算法来构建和训练线性模型进行波士顿房价预测的过程,并提供了模型保存的方法,同时提出了几个关于梯度计算、参数更新和神经网络训练的作业题目。
 《零基础实践深度学习》波士顿房价预测任务1.3.3.5 总结
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
探索机器学习:从线性回归到深度学习
【9月更文挑战第4天】在这篇文章中,我们将深入探讨机器学习的世界,从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过实际的代码示例,揭示这些模型背后的数学原理,以及如何在现实世界的问题中应用它们。无论你是初学者还是有经验的数据科学家,这篇文章都将为你提供新的视角和深入的理解。
|
2月前
|
机器学习/深度学习 数据采集 监控
怎么用机器学习做时间序列
8月更文挑战第20天
44 9
|
2月前
|
机器学习/深度学习 人工智能 算法
探索AI的魔法:机器学习与深度学习的奥秘
【8月更文挑战第27天】在这篇文章中,我们将深入探讨人工智能的两个重要分支:机器学习和深度学习。我们将首先理解它们的基本概念,然后通过Python代码示例,展示如何应用这些技术解决实际问题。无论你是AI新手,还是有经验的开发者,这篇文章都将为你提供新的知识和启示。让我们一起开启这场AI的魔法之旅吧!
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与CUDA:加速深度学习模型训练的最佳实践
【8月更文第27天】随着深度学习应用的广泛普及,高效利用GPU硬件成为提升模型训练速度的关键。PyTorch 是一个强大的深度学习框架,它支持动态计算图,易于使用且高度灵活。CUDA (Compute Unified Device Architecture) 则是 NVIDIA 开发的一种并行计算平台和编程模型,允许开发者直接访问 GPU 的并行计算能力。本文将详细介绍如何利用 PyTorch 与 CUDA 的集成来加速深度学习模型的训练过程,并提供具体的代码示例。
77 1
|
2月前
|
监控 测试技术
在模型训练中,如何衡量和平衡通用性和特定任务需求的重要性?
在模型训练中,如何衡量和平衡通用性和特定任务需求的重要性?
下一篇
无影云桌面