基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计(1)

简介: 基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计

前言

车辆检测追踪与流量计数系统是智能交通系统的重要组成部分,对于交通规划、交通拥堵管理以及道路安全都有着至关重要的作用。该系统通过采用先进的YOLOv8图像识别和ByteTrack跟踪算法,能够在高流量和复杂交通场景中实现高精度的车辆检测与跟踪,准确完成自行绘制任意一条线段的过线计数。这有助于快速响应交通状况变化,为城市交通管理提供实时数据支持,增强道路使用效率,并可以减少交通拥堵和事故率。

车辆检测追踪与流量计数系统的应用场景主要包括:

城市交通监控:提供城市路网的实时交通流量数据,帮助交通管理部门制定调控措施。

高速公路管理:监测高速公路上的车流量,为拥堵预警和车辆分流提供数据支撑。

收费站车流计数:在收费站自动计数通过车辆,高效实现收费管理和排队车辆控制。

停车场监控:自动统计停车场的车辆进出数量,优化车位的分配和管理。

交通规划:长期收集交通流量数据,为城市交通布局和基础设施建设提供规划依据。

交通行为研究:分析车辆流量和行驶模式,用于交通行为学的研究。

总结来说,车辆检测追踪与流量计数系统对于实现智慧城市的交通管理有着不可替代的作用,它不仅可以提高交通管理的实时性和准确性,还能为长期交通规划和研究提供大量可靠数据。随着技术的不断进步,这一系统将进一步提升交通运行效率,促进城市的可持续发展。

博主通过搜集道路车辆的相关数据图片,根据YOLOv8的目标检测与ByteTrack多目标追踪技术,基于python与Pyqt5开发了一款界面简洁的车辆检测追踪与流量计数系统,可支持视频以及摄像头检测本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 支持视频与摄像头中的车辆多目标检测追踪;
2. 可自行绘制任意方向线段,实现双向的过线计数统计,默认从下到上、从左向右为正向,另一个方向为反向;
3. 界面可实时显示双向过线数量通行总数检测帧率检测时长等信息;
4. 可选择画面中是否显示追踪轨迹显示检测框显示检测标签

注:本系统过线计数是依据目标中心点是否过线为判断依据的。

界面参数设置说明

  1. 显示追踪轨迹:用于设置检测的视频中是否显示目标追踪轨迹,默认勾选:表示显示追踪轨迹,不勾选则不显示追踪轨迹;
  2. 显示检测框:用于设置检测的视频中是否显示目标检测框,默认勾选:表示显示检测框,不勾选则不显示检测框;
  3. 显示标签:用于设置检测的视频中是否显示目标标签,默认勾选:表示显示检测标签,不勾选则不显示检测标签;
  4. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  5. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

显示追踪轨迹显示检测框显示标签选项的功能效果如下:

(1)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.打开视频后,点击绘制线段,用鼠标左键在显示的界面上分别点两个点,用于绘制用于过线计数的线段;

3.两个点绘制完成后,点击绘制完成按钮,即可实现对视频中过线目标的双向计数与统计。

注:此时界面中显示的检测时长:表示当前已经检测的视频时间长度【与检测速度有关】,不是现实中已经过去的时间

(2)摄像头检测演示

1.点击打开摄像头图标,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

2.打开摄像头后,点击绘制线段,用鼠标左键在显示的界面上分别点两个点,用于绘制用于过线计数的线段;

3.两个点绘制完成后,点击绘制完成按钮,即可实现对视频中过线目标的双向计数与统计。

注:此时界面中显示的检测时长:表示当前已经检测的视频时间长度【与检测速度有关】,不是现实中已经过去的时间

基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计(2)https://developer.aliyun.com/article/1536911

目录
打赏
0
0
0
0
115
分享
相关文章
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
146 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
58 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
133 66
解锁文档管理系统高效检索奥秘:Python 哈希表算法探究
在数字化时代,文档管理系统犹如知识宝库,支撑各行各业高效运转。哈希表作为核心数据结构,通过哈希函数将数据映射为固定长度的哈希值,实现快速查找与定位。本文聚焦哈希表在文档管理中的应用,以Python代码示例展示其高效检索特性,并探讨哈希冲突解决策略,助力构建智能化文档管理系统。
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
基于Python深度学习果蔬识别系统实现
|
1月前
|
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
32 3
源码安装Python学会有用还能装逼 | 解决各种坑
相信朋友们都看过这个零基础学习Python的开篇了
475 0
源码安装Python学会有用还能装逼 | 解决各种坑

热门文章

最新文章