基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计(1)

简介: 基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计

前言

车辆检测追踪与流量计数系统是智能交通系统的重要组成部分,对于交通规划、交通拥堵管理以及道路安全都有着至关重要的作用。该系统通过采用先进的YOLOv8图像识别和ByteTrack跟踪算法,能够在高流量和复杂交通场景中实现高精度的车辆检测与跟踪,准确完成自行绘制任意一条线段的过线计数。这有助于快速响应交通状况变化,为城市交通管理提供实时数据支持,增强道路使用效率,并可以减少交通拥堵和事故率。

车辆检测追踪与流量计数系统的应用场景主要包括:

城市交通监控:提供城市路网的实时交通流量数据,帮助交通管理部门制定调控措施。

高速公路管理:监测高速公路上的车流量,为拥堵预警和车辆分流提供数据支撑。

收费站车流计数:在收费站自动计数通过车辆,高效实现收费管理和排队车辆控制。

停车场监控:自动统计停车场的车辆进出数量,优化车位的分配和管理。

交通规划:长期收集交通流量数据,为城市交通布局和基础设施建设提供规划依据。

交通行为研究:分析车辆流量和行驶模式,用于交通行为学的研究。

总结来说,车辆检测追踪与流量计数系统对于实现智慧城市的交通管理有着不可替代的作用,它不仅可以提高交通管理的实时性和准确性,还能为长期交通规划和研究提供大量可靠数据。随着技术的不断进步,这一系统将进一步提升交通运行效率,促进城市的可持续发展。

博主通过搜集道路车辆的相关数据图片,根据YOLOv8的目标检测与ByteTrack多目标追踪技术,基于python与Pyqt5开发了一款界面简洁的车辆检测追踪与流量计数系统,可支持视频以及摄像头检测本文详细的介绍了此系统的核心功能以及所使用到的技术原理与制作流程。

软件初始界面如下图所示:

检测结果界面如下:

一、软件核心功能介绍及效果演示

软件主要功能

1. 支持视频与摄像头中的车辆多目标检测追踪;
2. 可自行绘制任意方向线段,实现双向的过线计数统计,默认从下到上、从左向右为正向,另一个方向为反向;
3. 界面可实时显示双向过线数量通行总数检测帧率检测时长等信息;
4. 可选择画面中是否显示追踪轨迹显示检测框显示检测标签

注:本系统过线计数是依据目标中心点是否过线为判断依据的。

界面参数设置说明

  1. 显示追踪轨迹:用于设置检测的视频中是否显示目标追踪轨迹,默认勾选:表示显示追踪轨迹,不勾选则不显示追踪轨迹;
  2. 显示检测框:用于设置检测的视频中是否显示目标检测框,默认勾选:表示显示检测框,不勾选则不显示检测框;
  3. 显示标签:用于设置检测的视频中是否显示目标标签,默认勾选:表示显示检测标签,不勾选则不显示检测标签;
  4. 置信度阈值:也就是目标检测时的conf参数,只有检测出的目标置信度大于该值,结果才会显示;
  5. 交并比阈值:也就是目标检测时的iou参数,只有目标检测框的交并比大于该值,结果才会显示;

显示追踪轨迹显示检测框显示标签选项的功能效果如下:

(1)视频检测演示

1.点击打开视频图标,打开选择需要检测的视频,就会自动显示检测结果。再次点击该按钮,会关闭视频

2.打开视频后,点击绘制线段,用鼠标左键在显示的界面上分别点两个点,用于绘制用于过线计数的线段;

3.两个点绘制完成后,点击绘制完成按钮,即可实现对视频中过线目标的双向计数与统计。

注:此时界面中显示的检测时长:表示当前已经检测的视频时间长度【与检测速度有关】,不是现实中已经过去的时间

(2)摄像头检测演示

1.点击打开摄像头图标,可以打开摄像头,可以实时进行检测,再次点击该按钮,可关闭摄像头

2.打开摄像头后,点击绘制线段,用鼠标左键在显示的界面上分别点两个点,用于绘制用于过线计数的线段;

3.两个点绘制完成后,点击绘制完成按钮,即可实现对视频中过线目标的双向计数与统计。

注:此时界面中显示的检测时长:表示当前已经检测的视频时间长度【与检测速度有关】,不是现实中已经过去的时间

基于YOLOv8与ByteTrack的车辆检测追踪与流量计数系统【python源码+Pyqt5界面+数据集+训练代码】深度学习实战、目标追踪、车辆检测追踪、过线计数、流量统计(2)https://developer.aliyun.com/article/1536911

目录
打赏
0
0
0
0
127
分享
相关文章
基于Python+Vue开发的家具商城管理系统源码+运行步骤
基于Python+Vue开发的家具商城管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的家具商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
22 8
基于Python+Vue开发的婚恋交友管理系统源码+运行步骤+课程作品
基于Python+Vue开发的婚恋交友管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的婚恋相亲交友系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。技术学习问题可以留言哦
25 9
基于Python+Vue开发的体育用品商城管理系统源码+运行步骤+课程设计
一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的体育用品销售商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
26 4
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
76 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
121 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
115 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
278 6
深度学习在流量监控中的革命性应用
深度学习在流量监控中的革命性应用
90 40
深度学习在资源利用率优化中的应用:让服务器更聪明
深度学习在资源利用率优化中的应用:让服务器更聪明
118 6
深入探索:深度学习在时间序列预测中的强大应用与实现
时间序列分析是数据科学和机器学习中一个重要的研究领域,广泛应用于金融市场、天气预报、能源管理、交通预测、健康监控等多个领域。时间序列数据具有顺序相关性,通常展示出时间上较强的依赖性,因此简单的传统回归模型往往不能捕捉其中复杂的动态特征。深度学习通过其非线性建模能力和层次结构的特征提取能力,能够有效地捕捉复杂的时间相关性和非线性动态变化模式,从而在时间序列分析中展现出极大的潜力。

热门文章

最新文章