【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现

简介: 【从零开始学习深度学习】30. 神经网络中批量归一化层(batch normalization)的作用及其Pytorch实现

通常,对于较浅层的神经网路,对输入数据进行标准化预处理就已经很有效果了,但是当神经网络的层数过多时,即使输入数据已做标准化,训练中模型参数的更新依然很容易造成靠近输出层输出的剧烈变化。这种计算数值的不稳定性通常令我们难以训练出有效的深度模型。

批量归一化(batch normalization)层的主要目的是在模型训练时,批量归一化利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。

1. 批量归一化层

由于对全连接层和卷积层做批量归一化的方法有些不同。下面我们将分别介绍这两种情况下的批量归一化。

1.1 对全连接层做批量归一化

image.png

image.png


image.png

1.2 对卷积层做批量归一化

对卷积层来说,批量归一化发生在卷积计算之后、应用激活函数之前。如果卷积计算输出多个通道,我们需要对这些通道的输出分别做批量归一化,且每个通道都拥有独立的拉伸和偏移参数,并均为标量。设小批量中有m个样本。在单个通道上,假设卷积计算输出的高和宽分别为pq。我们需要对该通道中m×p×q个元素同时做批量归一化。对这些元素做标准化计算时,我们使用相同的均值和方差,即该通道中m×p×q个元素的均值和方差。

1.3 预测时的批量归一化

使用批量归一化训练时,我们可以将批量大小设得大一点,从而使批量内样本的均值和方差的计算都较为准确。将训练好的模型用于预测时,我们希望模型对于任意输入都有确定的输出。因此,单个样本的输出不应取决于批量归一化所需要的随机小批量中的均值和方差。一种常用的方法是通过移动平均估算整个训练数据集的样本均值和方差,并在预测时使用它们得到确定的输出。可见,和丢弃层一样,批量归一化层在训练模式和预测模式下的计算结果也是不一样的。

2. 自己动手从零实现批量归一化层

下面我们自己实现批量归一化层。

import time
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def batch_norm(is_training, X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 判断当前模式是训练模式还是预测模式
    if not is_training:
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / torch.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(dim=0)
            var = ((X - mean) ** 2).mean(dim=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
            # X的形状以便后面可以做广播运算
            mean = X.mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
            var = ((X - mean) ** 2).mean(dim=0, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True)
        # 训练模式下用当前的均值和方差做标准化
        X_hat = (X - mean) / torch.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 拉伸和偏移
    return Y, moving_mean, moving_var

接下来,我们自定义一个BatchNorm层。它保存参与求梯度和迭代的拉伸参数gamma和偏移参数beta,同时也维护移动平均得到的均值和方差,以便能够在模型预测时被使用。BatchNorm实例所需指定的num_features参数对于全连接层来说应为输出个数,对于卷积层来说则为输出通道数。该实例所需指定的num_dims参数对于全连接层和卷积层来说分别为2和4。

class BatchNorm(nn.Module):
    def __init__(self, num_features, num_dims):
        super(BatchNorm, self).__init__()
        if num_dims == 2:
            shape = (1, num_features)
        else:
            shape = (1, num_features, 1, 1)
        # 参与求梯度和迭代的拉伸和偏移参数,分别初始化成0和1
        self.gamma = nn.Parameter(torch.ones(shape))
        self.beta = nn.Parameter(torch.zeros(shape))
        # 不参与求梯度和迭代的变量,全在内存上初始化成0
        self.moving_mean = torch.zeros(shape)
        self.moving_var = torch.zeros(shape)
    def forward(self, X):
        # 如果X不在内存上,将moving_mean和moving_var复制到X所在显存上
        if self.moving_mean.device != X.device:
            self.moving_mean = self.moving_mean.to(X.device)
            self.moving_var = self.moving_var.to(X.device)
        # 保存更新过的moving_mean和moving_var, Module实例的traning属性默认为true, 调用.eval()后设成false
        Y, self.moving_mean, self.moving_var = batch_norm(self.training, 
            X, self.gamma, self.beta, self.moving_mean,
            self.moving_var, eps=1e-5, momentum=0.9)
        return Y

2.1 使用批量归一化层的LeNet

下面我们修改之前介绍的LeNet模型,从而应用批量归一化层。我们在所有的卷积层或全连接层之后、激活层之前加入批量归一化层。

net = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            BatchNorm(6, num_dims=4),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            BatchNorm(16, num_dims=4),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2),
            d2l.FlattenLayer(),
            nn.Linear(16*4*4, 120),
            BatchNorm(120, num_dims=2),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            BatchNorm(84, num_dims=2),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )

下面我们训练修改后的模型。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.0039, train acc 0.790, test acc 0.835, time 2.9 sec
epoch 2, loss 0.0018, train acc 0.866, test acc 0.821, time 3.2 sec
epoch 3, loss 0.0014, train acc 0.879, test acc 0.857, time 2.6 sec
epoch 4, loss 0.0013, train acc 0.886, test acc 0.820, time 2.7 sec
epoch 5, loss 0.0012, train acc 0.891, test acc 0.859, time 2.8 sec

最后我们查看第一个批量归一化层学习到的拉伸参数gamma和偏移参数beta

net[1].gamma.view((-1,)), net[1].beta.view((-1,))

输出:

(tensor([ 1.2537,  1.2284,  1.0100,  1.0171,  0.9809,  1.1870], device='cuda:0'),
 tensor([ 0.0962,  0.3299, -0.5506,  0.1522, -0.1556,  0.2240], device='cuda:0'))

3. 使用Pytorch简洁实现批量归一化层

与我们刚刚自己定义的BatchNorm类相比,Pytorch中nn模块定义的BatchNorm1dBatchNorm2d类使用起来更加简单,二者分别用于全连接层和卷积层,都需要指定输入的num_features参数值。下面我们用PyTorch实现使用批量归一化的LeNet网络。

net = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            nn.BatchNorm2d(6),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            nn.BatchNorm2d(16),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2),
            d2l.FlattenLayer(),
            nn.Linear(16*4*4, 120),
            nn.BatchNorm1d(120),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.BatchNorm1d(84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )

使用同样的超参数进行训练。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.0054, train acc 0.767, test acc 0.795, time 2.0 sec
epoch 2, loss 0.0024, train acc 0.851, test acc 0.748, time 2.0 sec
epoch 3, loss 0.0017, train acc 0.872, test acc 0.814, time 2.2 sec
epoch 4, loss 0.0014, train acc 0.883, test acc 0.818, time 2.1 sec
epoch 5, loss 0.0013, train acc 0.889, test acc 0.734, time 1.8 sec

4. 总结

  • 在模型训练时,批量归一化利用小批量上的均值和标准差,不断调整神经网络的中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。
  • 对全连接层和卷积层做批量归一化的方法稍有不同。
  • 批量归一化层和丢弃层一样,在训练模式和预测模式的计算结果是不一样的。
  • PyTorch提供了nn模块定义的BatchNorm1dBatchNorm2d类分别用于全连接层和卷积层的批量归一化。
相关文章
|
9天前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
9天前
|
机器学习/深度学习
【从零开始学习深度学习】37. 深度循环神经网络与双向循环神经网络简介
【从零开始学习深度学习】37. 深度循环神经网络与双向循环神经网络简介
|
5天前
|
机器学习/深度学习 人工智能 算法
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
【机器学习】深度探索:从基础概念到深度学习关键技术的全面解析——梯度下降、激活函数、正则化与批量归一化
16 3
|
9天前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
|
1月前
|
机器学习/深度学习 算法 PyTorch
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
python手把手搭建图像多分类神经网络-代码教程(手动搭建残差网络、mobileNET)
65 0
|
1月前
|
机器学习/深度学习 自然语言处理 数据可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
数据代码分享|PYTHON用NLP自然语言处理LSTM神经网络TWITTER推特灾难文本数据、词云可视化
|
9天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
9天前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
2天前
|
机器学习/深度学习 算法 计算机视觉
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
5 0
没有公式,不要代码,让你理解 RCNN:目标检测中的区域卷积神经网络
|
30天前
|
机器学习/深度学习 自然语言处理 搜索推荐
【传知代码】图神经网络长对话理解-论文复现
在ACL2023会议上发表的论文《使用带有辅助跨模态交互的关系时态图神经网络进行对话理解》提出了一种新方法,名为correct,用于多模态情感识别。correct框架通过全局和局部上下文信息捕捉对话情感,同时有效处理跨模态交互和时间依赖。模型利用图神经网络结构,通过构建图来表示对话中的交互和时间关系,提高了情感预测的准确性。在IEMOCAP和CMU-MOSEI数据集上的实验结果证明了correct的有效性。源码和更多细节可在文章链接提供的附件中获取。
【传知代码】图神经网络长对话理解-论文复现