【从零开始学习深度学习】22. 卷积神经网络(CNN)中填充(padding)与步幅(stride)详解,填充、步幅、输入及输出之间的关系

简介: 【从零开始学习深度学习】22. 卷积神经网络(CNN)中填充(padding)与步幅(stride)详解,填充、步幅、输入及输出之间的关系

在上一篇文章中,我们使用高和宽为3的输入与高和宽为2的卷积核得到高和宽为2的输出。一般来说,假设输入形状是nh×nw,卷积核窗口形状是kh×kw,那么输出形状将会是

image.png

所以卷积层的输出形状由输入形状和卷积核窗口形状决定。本文我们将介绍卷积层的两个超参数,即填充和步幅。它们可以对给定形状的输入和卷积核改变输出形状。

1 填充(padding)

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素)。图1里我们在原输入高和宽的两侧分别添加了值为0的元素,使得输入高和宽从3变成了5,并导致输出高和宽由2增加到4。图1中的阴影部分为第一个输出元素及其计算所使用的输入和核数组元素:0 × 0 + 0 × 1 + 0 × 2 + 0 × 3 = 0 。

一般来说,如果在高的两侧一共填充ph行,在宽的两侧一共填充pw列,那么输出形状将会是

image.png

也就是说,输出的高和宽会分别增加phpw

在很多情况下,我们会设置ph=kh1pw=kw1来使输入和输出具有相同的高和宽。这样会方便在构造网络时推测每个层的输出形状。假设这里k h k_hkh是奇数,我们会在高的两侧分别填充ph/2行。如果kh是偶数,一种可能是在输入的顶端一侧填充ph//2行,而在底端一侧填充ph//2+1行。在宽的两侧填充同理。

卷积神经网络经常使用奇数高宽的卷积核,如1、3、5和7,所以两端上的填充个数相等。对任意的二维数组X,设它的第i行第j列的元素为X[i,j]。当两端上的填充个数相等,并使输入和输出具有相同的高和宽时,我们就知道输出Y[i,j]是由输入以X[i,j]为中心的窗口同卷积核进行互相关计算得到的。

下面的例子里我们创建一个高和宽为3的二维卷积层(卷积核),然后设输入高和宽两侧的填充数分别为1。给定一个高和宽为8的输入,我们发现输出的高和宽也是8。

import torch
from torch import nn
# 定义一个函数来计算卷积层。它对输入和输出做相应的升维和降维
def comp_conv2d(conv2d, X):
    # (1, 1)代表批量大小和通道数均为1
    X = X.view((1, 1) + X.shape)
    Y = conv2d(X)
    return Y.view(Y.shape[2:])  # 排除不关心的前两维:批量和通道
# 注意这里是两侧分别填充1行或列,所以在两侧一共填充2行或列
conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=3, padding=1)
X = torch.rand(8, 8)
comp_conv2d(conv2d, X).shape

输出:

torch.Size([8, 8])

当卷积核的高和宽不同时,我们也可以通过设置高和宽上不同的填充数使输出和输入具有相同的高和宽。

# 使用高为5、宽为3的卷积核。在高和宽两侧的填充数分别为2和1
conv2d = nn.Conv2d(in_channels=1, out_channels=1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

输出:

torch.Size([8, 8])

2 步幅(stride)

在上一篇文章中介绍了二维互相关运算。卷积窗口从输入数组的最左上方开始,按从左往右、从上往下的顺序,依次在输入数组上滑动。我们将每次滑动的行数和列数称为步幅(stride)

目前我们看到的例子里,在高和宽两个方向上步幅均为1。我们也可以使用更大步幅。图2展示了在高上步幅为3、在宽上步幅为2的二维互相关运算。可以看到,输出第一列第二个元素时,卷积窗口向下滑动了3行,而在输出第一行第二个元素时卷积窗口向右滑动了2列。当卷积窗口在输入上再向右滑动2列时,由于输入元素无法填满窗口,无结果输出。图2中的阴影部分为输出元素及其计算所使用的输入和核数组元素:0×0+0×1+1×2+2×3=80 × 0 + 6 × 1 + 0 × 2 + 0 × 3 =6

一般来说,当高上步幅为s h s_hsh,宽上步幅为s w s_wsw时,输出形状为

image.png

下面我们令高和宽上的步幅均为2,从而使输入的高和宽减半。

conv2d = nn.Conv2d(1, 1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape

输出:

torch.Size([4, 4])

接下来是一个稍微复杂点儿的例子。

conv2d = nn.Conv2d(1, 1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape

输出:

torch.Size([2, 2])

image.png

总结

  • 填充可以增加输出的高和宽。这常用来使输出与输入具有相同的高和宽。
  • 步幅可以减小输出的高和宽,例如输出的高和宽仅为输入的高和宽的1 / n 1/n1/nn nn为大于1的整数)。
目录
打赏
0
3
3
0
115
分享
相关文章
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
166 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
56 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
135 10
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
深度学习在安全事件检测中的应用:守护数字世界的利器
深度学习在安全事件检测中的应用:守护数字世界的利器
75 22
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
213 6

热门文章

最新文章