基于ADM自适应增量调制算法的matlab性能仿真

简介: 该文主要探讨基于MATLAB的ADM自适应增量调制算法仿真,对比ADM与DM算法。通过图表展示调制与解调效果,核心程序包括输入输出比较及SNR分析。ADM算法根据信号斜率动态调整量化步长,以适应信号变化。在MATLAB中实现ADM涉及定义输入信号、初始化参数、执行算法逻辑及性能评估。

1.课题概述
基于ADM自适应增量调制算法的matlab性能仿真,对比ADM和DM两种增量调制算法,最后输出解调后输出和参考输入之间的信噪比。

2.系统仿真结果

1.jpeg
2.jpeg
3.jpeg

3.核心程序与模型
版本:MATLAB2022a

```% 输入和预测输出比较
figure;
subplot(2,2,1);
plot(t,Xref1); % 绘制输入信号
title('Delta调制');
xlabel('Time(s)');
ylabel('幅度(V)');
hold on;
stairs(t,DM_pred,'r'); % 绘制增量调制预测输出
legend('Input', 'DM预测输出');

% 输入和解调输出比较
subplot(2,2,3);
plot(t,Xref1); % 绘制输入信号
title('Delta解调');
xlabel('Time(s)');
ylabel('幅度(V)');
hold on;
plot(t, DM_dec,'r'); % 绘制增量解调输出
legend('Input', 'DM解调');

% ADM输入和预测输出比较
subplot(2,2,2);
plot(t,Xref1); % 绘制输入信号
title('ADM调制'); % 注意:标题应该是ADM Modulation
xlabel('Time(s)');
ylabel('幅度(V)');
hold on;
stairs(t,ADM_pred,'r'); % 绘制ADM调制预测输出
legend('Input', 'ADM预测输出');

% 输入和解调输出比较
subplot(2,2,4);
plot(t,Xref1); % 绘制输入信号
title('ADM解调'); % 注意:标题应该是ADM Modulation
xlabel('Time(s)');
ylabel('幅度(V)');
hold on;
plot(t, ADM_dec,'r'); % 绘制ADM解调输出
legend('Input', 'ADM解调');

SNR2 =[SNR21,SNR22];

figure;
bar([SNR1;SNR2]);
ylabel('SNR');
legend('Delta调制','ADM调制');
figure;
plot(t,Xref2,'b'); % 绘制输入信号
hold on;
plot(t, DM_dec,'k'); % 绘制增量解调输出
hold on;
plot(t, ADM_dec,'r'); % 绘制ADM解调输出
xlabel('Time(s)');
ylabel('幅度(V)');
legend('输入参考', 'DM调制', 'ADM调制');
title('阶跃输入对比');
20

```

4.系统原理简介
自适应增量调制(Adaptive Delta Modulation,ADM)是一种模拟信号到数字信号的转换技术,属于增量调制的一种改进形式。它根据输入信号的斜率变化自适应地调整量化步长,从而更有效地跟踪信号的快速变化。

4.1 ADM自适应增量调制算法简介
ADM试图通过动态调整量化步长(Delta)来跟踪输入信号的斜率变化。当输入信号的斜率增加时,步长也增加;当斜率减小时,步长也减小。
工作过程:
初始化:设定初始步长Delta_0和一个预测值(通常是0)。
在每个采样时刻,计算当前采样值与预测值之差。
根据这个差值,调整预测值和可能的步长。
输出调整后的预测值作为数字化后的信号。
步长调整规则:
如果当前采样值与预测值的差超过了某个阈值(通常与步长相关),则调整预测值,并可能增加步长。
如果差值较小,则只调整预测值,并可能减小步长。

4.2MATLAB中实现ADM算法
在MATLAB中实现ADM算法,通常涉及以下步骤:

定义输入信号(如正弦波、方波等)。
初始化算法参数(如初始步长、步长调整参数等)。
实现算法逻辑,包括步长调整和预测值更新。
对输出信号进行性能评估(如计算SNR、绘制波形图等)。

相关文章
|
18小时前
|
算法 物联网
机会路由MORE协议的matlab性能仿真
摘要: 本研究关注无线Mesh网络中的机会路由与网络编码融合技术,特别是MORE协议。机会路由利用无线特性提高网络效率,而网络编码提升网络吞吐量。在分析这两项技术的基础上,提出改进MORE的方案,优化节点选择和路径测量,以增强网络性能。使用MATLAB2022a进行仿真验证。尽管MORE独立于MAC层并应用线性网络编码,但其ETX测量可能存在不准确问题,该问题成为改进的重点。
|
17小时前
|
算法 数据安全/隐私保护
基于GA遗传优化算法的Okumura-Hata信道参数估计算法matlab仿真
在MATLAB 2022a中应用遗传算法进行无线通信优化,无水印仿真展示了算法性能。遗传算法源于Holland的理论,用于全局优化,常见于参数估计,如Okumura-Hata模型的传播损耗参数。该模型适用于150 MHz至1500 MHz的频段。算法流程包括选择、交叉、变异等步骤。MATLAB代码执行迭代,计算目标值,更新种群,并计算均方根误差(RMSE)以评估拟合质量。最终结果比较了优化前后的RMSE并显示了SNR估计值。
14 7
|
17小时前
|
监控
基于偏微分方程离散化计算的地下换热器建模与温度检测matlab仿真
**摘要:** 探索地下换热器的建模与温度检测,使用MATLAB2022a进行系统仿真,关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型,模拟温度场,考虑地质特性和水流影响。建模以网格单元描述温度变化,采用热电偶、红外和光纤测温技术验证模型并监控温度,各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
|
1天前
|
存储 传感器 算法
基于ACO蚁群优化算法的WSN网络路由优化matlab仿真
摘要(Markdown格式): - 📈 ACO算法应用于WSN路由优化,MATLAB2022a中实现,动态显示迭代过程,输出最短路径。 - 🐜 算法模拟蚂蚁寻找食物,信息素更新与蚂蚁选择策略确定路径。信息素增量Δτ += α*τ*η,节点吸引力P ∝ τ / d^α。 - 🔁 算法流程:初始化→蚂蚁路径选择→信息素更新→判断结束条件→输出最优路由。优化WSN能量消耗,降低传输成本。
|
2天前
|
算法 数据挖掘
MATLAB数据分析、从算法到实现
MATLAB数据分析、从算法到实现
|
9天前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
8天前
|
算法
基于Dijkstra算法的最优行驶路线搜索matlab仿真,以实际城市复杂路线为例进行测试
使用MATLAB2022a实现的Dijkstra算法在城市地图上搜索最优行驶路线的仿真。用户通过鼠标点击设定起点和终点,算法规划路径并显示长度。测试显示,尽管在某些复杂情况下计算路径可能与实际有偏差,但多数场景下Dijkstra算法能找到接近最短路径。核心代码包括图的显示、用户交互及Dijkstra算法实现。算法基于图论,不断更新未访问节点的最短路径。测试结果证明其在简单路线及多数复杂城市路况下表现良好,但在交通拥堵等特殊情况下需结合其他数据提升准确性。
|
14天前
|
算法 安全 数据库
基于结点电压法的配电网状态估计算法matlab仿真
**摘要** 该程序实现了基于结点电压法的配电网状态估计算法,旨在提升数据的准确性和可靠性。在MATLAB2022a中运行,显示了状态估计过程中的电压和相位估计值,以及误差随迭代变化的图表。算法通过迭代计算雅可比矩阵,结合基尔霍夫定律解决线性方程组,估算网络节点电压。状态估计过程中应用了高斯-牛顿或莱文贝格-马夸尔特法,处理量测数据并考虑约束条件,以提高估计精度。程序结果以图形形式展示电压幅值和角度估计的比较,以及估计误差的演变,体现了算法在处理配电网状态估计问题的有效性。
|
11天前
|
数据采集 存储 算法
基于BP算法的SAR成像matlab仿真
**摘要:** 基于BP算法的SAR成像研究,利用MATLAB2022a进行仿真。SAR系统借助相对运动合成大孔径,提供高分辨率图像。BP算法执行回波数据预处理、像素投影及图像重建,实现精确成像。优点是高精度和强适应性,缺点是计算量大、内存需求高。代码示例展示了回波生成、数据处理到插值显示的全过程。
|
18天前
|
机器学习/深度学习 自然语言处理 算法
m基于深度学习的OFDM+QPSK链路信道估计和均衡算法误码率matlab仿真,对比LS,MMSE及LMMSE传统算法
**摘要:** 升级版MATLAB仿真对比了深度学习与LS、MMSE、LMMSE的OFDM信道估计算法,新增自动样本生成、复杂度分析及抗频偏性能评估。深度学习在无线通信中,尤其在OFDM的信道估计问题上展现潜力,解决了传统方法的局限。程序涉及信道估计器设计,深度学习模型通过学习导频信息估计信道响应,适应频域变化。核心代码展示了信号处理流程,包括编码、调制、信道模拟、降噪、信道估计和解调。
42 8

热门文章

最新文章