深入解析力扣162题:寻找峰值(线性扫描与二分查找详解)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 深入解析力扣162题:寻找峰值(线性扫描与二分查找详解)

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣!

期待与您一起探索技术、持续学习、一步步打怪升级 欢迎订阅本专栏❤️❤️

在本篇文章中,我们将详细解读力扣第162题“寻找峰值”。通过学习本篇文章,读者将掌握如何使用多种方法来解决这一问题,并了解相关的复杂度分析。每种方法都将配以详细的解释和ASCII图解,以便于理解。

问题描述

力扣第162题“寻找峰值”描述如下:

峰值元素是指其值大于左右相邻值的元素。给你一个输入数组 nums,其中 nums[i] ≠ nums[i+1],找到峰值元素并返回其索引。数组可能包含多个峰值,在这种情况下,返回任何一个峰值所在位置即可。你可以假设 nums[-1] = nums[n] = -∞

示例 1:

输入: nums = [1,2,3,1]
输出: 2
解释: 3 是峰值元素,你的函数应该返回索引 2。

示例 2:

输入: nums = [1,2,1,3,5,6,4]
输出: 1 或 5 
解释: 你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5,其峰值元素为 6。

解题思路

  1. 初步分析
  • 峰值元素是指其值大于左右相邻值的元素。
  • 可以使用线性扫描的方法找到峰值,也可以使用二分查找来提高效率。

方法一:线性扫描

  1. 步骤
  • 遍历数组中的每个元素,检查其是否大于左右相邻的元素。
  • 返回第一个满足条件的元素索引。
代码实现
def findPeakElement(nums):
    for i in range(len(nums)):
        if (i == 0 or nums[i] > nums[i - 1]) and (i == len(nums) - 1 or nums[i] > nums[i + 1]):
            return i
    return -1
# 测试案例
print(findPeakElement([1, 2, 3, 1]))  # 输出: 2
print(findPeakElement([1, 2, 1, 3, 5, 6, 4]))  # 输出: 1 或 5
ASCII图解

假设输入数组为 [1, 2, 3, 1],图解如下:

数组: [1, 2, 3, 1]
遍历过程:
i = 0, nums[i] = 1 (不是峰值)
i = 1, nums[i] = 2 (不是峰值)
i = 2, nums[i] = 3 (是峰值)
返回索引 2

方法二:二分查找

  1. 步骤
  • 使用二分查找的方法,在每次查找过程中比较中间元素与其相邻元素的大小。
  • 根据比较结果缩小查找范围,直到找到峰值元素。
代码实现
def findPeakElement(nums):
    left, right = 0, len(nums) - 1
    
    while left < right:
        mid = (left + right) // 2
        if nums[mid] > nums[mid + 1]:
            right = mid
        else:
            left = mid + 1
    
    return left
# 测试案例
print(findPeakElement([1, 2, 3, 1]))  # 输出: 2
print(findPeakElement([1, 2, 1, 3, 5, 6, 4]))  # 输出: 1 或 5
ASCII图解

假设输入数组为 [1, 2, 3, 1],图解如下:

数组: [1, 2, 3, 1]
初始状态: left = 0, right = 3
第一次二分查找:
mid = (0 + 3) // 2 = 1
nums[mid] = 2, nums[mid + 1] = 3
nums[mid] < nums[mid + 1]
left = mid + 1 = 2
第二次二分查找:
mid = (2 + 3) // 2 = 2
nums[mid] = 3, nums[mid + 1] = 1
nums[mid] > nums[mid + 1]
right = mid = 2
最终状态: left = 2, right = 2
返回索引 2

复杂度分析

  • 时间复杂度
  • 线性扫描法:O(n),其中 n 是数组的长度。
  • 二分查找法:O(log n),其中 n 是数组的长度。
  • 空间复杂度
  • 两种方法均为 O(1),只使用了常数空间来存储计数变量和索引。

测试案例分析

  1. 测试案例 1
  • 输入: nums = [1, 2, 3, 1]
  • 输出: 2
  • 解释: 3 是峰值元素,返回索引 2。
  1. 测试案例 2
  • 输入: nums = [1, 2, 1, 3, 5, 6, 4]
  • 输出: 15
  • 解释: 你的函数可以返回索引 1,其峰值元素为 2;或者返回索引 5,其峰值元素为 6。

总结

本文详细解读了力扣第162题“寻找峰值”,通过线性扫描法和二分查找法两种方法,高效地解决了这一问题。希望读者通过本文的学习,能够在力扣刷题的过程中更加得心应手。

参考资料

  • 《算法导论》—— Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein
  • 力扣官方题解

🌹🌹如果觉得这篇文对你有帮助的话,记得一键三连关注、赞👍🏻、收藏是对作者最大的鼓励,非常感谢 ❥(^_-)

❤️❤️关注公众号 数据分析螺丝钉 回复 学习资料 领取高价值免费学习资料❥(^_-)

欢迎关注微信公众号 数据分析螺丝钉

相关文章
|
3月前
【LeetCode 01】二分查找总结
【LeetCode 01】二分查找总结
18 0
|
5月前
|
Python
【Leetcode刷题Python】704. 二分查找
解决LeetCode "二分查找" 问题的Python实现代码。
22 0
|
5月前
|
算法 索引 Python
【Leetcode刷题Python】34. 在排序数组中查找元素的第一个和最后一个位置(二分查找)
解决LeetCode "在排序数组中查找元素的第一个和最后一个位置" 问题的方法。第一种方法是使用两次二分查找,首先找到目标值的最左边界,然后找到最右边界。第二种方法是利用Python的list.index()方法,先正序找到起始位置,再逆序找到结束位置,并给出了两种方法的Python实现代码。
72 0
|
7月前
|
索引
【LeetCode刷题】二分查找:山脉数组的峰顶索引、寻找峰值
【LeetCode刷题】二分查找:山脉数组的峰顶索引、寻找峰值
|
7月前
【LeetCode刷题】专题三:二分查找模板
【LeetCode刷题】专题三:二分查找模板
【LeetCode刷题】专题三:二分查找模板
|
7月前
|
SQL 算法 大数据
深入解析力扣184题:部门工资最高的员工(子查询与窗口函数详解)
深入解析力扣184题:部门工资最高的员工(子查询与窗口函数详解)
|
7月前
|
算法
力扣经典150题解析之三十四:有效的数独
力扣经典150题解析之三十四:有效的数独
56 0
|
7月前
|
算法 搜索推荐 测试技术
力扣经典150题解析之二十九:三数之和
力扣经典150题解析之二十九:三数之和
52 0
|
7月前
|
算法 测试技术 程序员
力扣经典150题解析之二十八:盛最多水的容器
力扣经典150题解析之二十八:盛最多水的容器
61 0

热门文章

最新文章

推荐镜像

更多