JavaSE——算法(1/2):认识、冒泡排序、选择排序及优化(介绍、详细图解、代码)

简介: JavaSE——算法(1/2):认识、冒泡排序、选择排序及优化(介绍、详细图解、代码)

认识算法

什么是算法?


算法就像是一个厨房里的食谱。当你想做一道菜时,你需要按照食谱上的步骤来操作,确保每一步都做对了,这样才能做出美味的菜肴。同样地,算法就是一系列解决问题的步骤,它告诉计算机如何处理数据,从而得到我们想要的结果

算法就像是一个聪明的助手,它可以帮助我们完成各种任务,比如排序、搜索、预测天气等等。只要我们给它正确的指令和数据,它就能按照预定的步骤,快速而准确地完成任务。


为什么要学习算法?


学习算法可以让我们更好地理解编程的本质,提高我们的编程能力。这样,我们就可以写出更好的程序,解决更复杂的问题。而且算法不仅可以用在计算机上,还可以用在生活中的很多地方。例如,烹饪食谱、旅行计划、投资策略等都可以看作是一种算法。

学习算法的技巧


  1. 理解问题:在尝试编写代码之前,首先要彻底理解问题。先搞清楚算法的流程。
  2. 逐步实现:将算法分解成小的、可管理的部分,并逐步实现它们。这可以使问题更容易处理,并允许你在每个步骤中进行测试和调试。
  3. 最后直接去推敲如何写代码。

那么下面就先来看两个简单的排序算法:

  • 冒泡排序
  • 选择排序

冒泡排序

介绍

从初始索引开始,当前索引与之后的索引两两比较,每比较完一次索引增加一次,每次从数组中找出最大值放在数组的后面去。

实现冒泡排序的关键步骤分析


  • 确定总共需要做几轮:数组的长度 - 1
  • 每轮比较几次:数组的长度 - i - 1  (i为当前的轮数 - 1)
  • 当前位置大于后一个位置则交换数据

详细图解

假设我们要将一个数组按升序排序,从数组的第一个数和第二个数开始进行比较;

我们先来看第一轮排序

第一轮比较的次数:3次 (也就是数组的长度4 - 0(当前轮数 - 1) - 1

接下来看第二轮排序:

   

第二轮比较的次数:2次 (也就是数组的长度4 - 1(当前轮数 - 1) - 1

那么第三轮比较的次数就为1次了。



该数组的长度为4,故而需要比较的轮数为:3次        (数组的长度 4 - 1)


由于冒泡排序的每一轮排序都会把一个最大或者最小的元素放在最后的位置,这个元素与前面所有的元素都比较过了,已经是确定的值,所以我们不再需要对它进行比较;所以每比较一轮,我们就少一个需要比较的元素。

代码部分

import java.util.Arrays;
 
public class BubbleSort {
    public static void main(String[] args) {
        //1.准备一个数组
        int[] arr = {5,2,3,1};
 
        //2.定义一个循环控制排几轮
        for(int i = 0;i < arr.length - 1;i++){
            //3.定义一个循环控制每轮比较几次
            for(int j = 0; j < arr.length - i - 1;j++){
                //判断当前位置的元素值,是否大于后一个位置的元素值,如果大则交换
                if(arr[j] > arr[j + 1]){
                    arr[j + 1] = arr[j] ^ arr[j + 1];
                    arr[j] = arr[j] ^ arr[j + 1];
                    arr[j + 1] = arr[j] ^ arr[j + 1];
                }
            }
        }
        System.out.println(Arrays.toString(arr));
    }
}

运行结果:

选择排序

介绍

  • 每轮选择当前位置,开始找出后面的较小值(或较大值)与该位置交换。

比如第一轮比较:第一个元素分别与后面所有的元素进行比较,根据升序或降序进行交换。

选择排序的关键

  • 确定总共需要选择几轮:数组的长度 - 1
  • 控制每轮从以前位置为基准,与后面元素选择几次

还是以上一个数组为例子,

详细图解

第一轮比较了3次

第二轮比较了2次

第三轮就比较一次:

代码部分

import java.util.Arrays;
 
public class SelectionSort {
    public static void main(String[] args) {
        int[] arr = {5,1,3,2};
 
 
        for(int i = 0; i < arr.length - 1; i++){
 
            for(int j = i +1; j < arr.length; j++){
                if(arr[i] > arr[j]){
                    arr[i] = arr[i] ^ arr[j];
                    arr[j] = arr[i] ^ arr[j];
                    arr[i] = arr[i] ^ arr[j];
                }
            }
        }
        System.out.println(Arrays.toString(arr));
    }
}

运行结果:


选择排序优化

对于选择排序,其实我们可以稍加优化。不再进行多次的元素交换,而改为每轮排序都只交换一次,也就是说,我们可以在后面的索引中找到最小值(或最大值)与当前索引位置的元素进行一次比较,然后作一次交换即可。

图解

以图解的形式演示

代码部分

import java.util.Arrays;
 
public class SelectionSort {
    public static void main(String[] args) {
        int[] arr = {5,1,3,2};
        for(int i = 0; i < arr.length - 1; i++){
            int minIndex = i;   //记录最小值的索引
            for(int j = i + 1; j < arr.length; j++){
                if(arr[j] < arr[minIndex]){
                    minIndex = j;
                }
            }
            if(arr[i] > arr[minIndex]){
                arr[i] = arr[i] ^ arr[minIndex];
                arr[minIndex] = arr[i] ^ arr[minIndex];
                arr[i] = arr[i] ^ arr[minIndex];
            }
        }
        System.out.println(Arrays.toString(arr));
    }
}

运行结果:



同样的环境下,效率对比:

import java.util.Arrays;
import java.util.Random;
 
public class SelectionSort {
    public static void main(String[] args) {
        Random r = new Random();
        int[] arr = new int[100000];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = r.nextInt(1000000) + 1;
        }
 
        long time1 = System.currentTimeMillis();
        for(int i = 0; i < arr.length - 1; i++){
 
            for(int j = i +1; j < arr.length; j++){
                if(arr[i] > arr[j]){
                    arr[i] = arr[i] ^ arr[j];
                    arr[j] = arr[i] ^ arr[j];
                    arr[i] = arr[i] ^ arr[j];
                }
            }
        }
        long time2 = System.currentTimeMillis();
//        System.out.println(Arrays.toString(arr));
        System.out.println("执行时间:" + (time2 - time1) / 1000.0 + "s");
    }
}
import java.util.Arrays;
import java.util.Random;
 
public class SelectionSort {
    public static void main(String[] args) {
        Random r = new Random();
        int[] arr = new int[100000];
        for (int i = 0; i < arr.length; i++) {
            arr[i] = r.nextInt(1000000) + 1;
        }
 
        long time1 = System.currentTimeMillis();
        for(int i = 0; i < arr.length - 1; i++){
            int minIndex = i;   //记录最小值的索引
            for(int j = i + 1; j < arr.length; j++){
                if(arr[j] < arr[minIndex]){
                    minIndex = j;
                }
            }
            if(arr[i] > arr[minIndex]){
                arr[i] = arr[i] ^ arr[minIndex];
                arr[minIndex] = arr[i] ^ arr[minIndex];
                arr[i] = arr[i] ^ arr[minIndex];
            }
        }
        long time2 = System.currentTimeMillis();
//        System.out.println(Arrays.toString(arr));
        System.out.println("执行时间:" + (time2 - time1) / 1000.0 + "s");
    }
}

END



目录
相关文章
|
18天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
111 68
|
29天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
166 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
27天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
26天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
2月前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
2月前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
127 11
|
1月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
1月前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。