分布式计算框架比较:Hadoop、Spark 与 Flink

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 【5月更文挑战第31天】Hadoop是大数据处理的开创性框架,专注于大规模批量数据处理,具有高扩展性和容错性。然而,它在实时任务上表现不足。以下是一个简单的Hadoop MapReduce的WordCount程序示例,展示如何统计文本中单词出现次数。

在大数据处理领域,Hadoop、Spark 和 Flink 是三个非常重要的分布式计算框架,它们各自有着独特的特点和优势。

Hadoop 是分布式计算的先驱框架。它主要由 HDFS(分布式文件系统)和 MapReduce(计算框架)组成。Hadoop 擅长处理大规模的批量数据处理任务,具有高度的可扩展性和容错性。然而,它在处理实时性要求较高的任务时表现相对较弱。

以下是一个简单的 Hadoop MapReduce 示例代码:

```java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class WordCount {

public static class TokenizerMapper
        extends Mapper<Object, Text, Text, IntWritable> {

    private final static IntWritable one = new IntWritable(1);
    private Text word = new Text();

    public void map(Object key, Text value, Context context
    ) throws IOException, InterruptedException {
        StringTokenizer itr = new StringTokenizer(value.toString());
        while (itr.hasMoreTokens()) {
            word.set(itr.nextToken());
            context.write(word, one);
        }
    }
}

public static class IntSumReducer
        extends Reducer<Text, IntWritable, Text, IntWritable> {

    private IntWritable result = new IntWritable();

    public void reduce(Text key, Iterable<IntWritable> values,
            Context context) throws IOException, InterruptedException {
        int sum = 0;
        for (IntWritable val : values) {
            sum += val.get();
        }
        result.set(sum);
        context.write(key, result);
    }
}

public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKey
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
7天前
|
分布式计算 Hadoop 关系型数据库
实时计算 Flink版操作报错合集之Hadoop在将文件写入HDFS时,无法在所有指定的数据节点上进行复制,该如何解决
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
|
8天前
|
分布式计算 数据处理 流计算
实时计算 Flink版产品使用问题之使用Spark ThriftServer查询同步到Hudi的数据时,如何实时查看数据变化
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
1月前
|
分布式计算 资源调度 Hadoop
分布式系统详解--架构(Hadoop-克隆服务器)
分布式系统详解--架构(Hadoop-克隆服务器)
29 1
|
1月前
|
XML 分布式计算 Hadoop
分布式系统详解--框架(Hadoop-单机版搭建)
分布式系统详解--框架(Hadoop-单机版搭建)
42 0
分布式系统详解--框架(Hadoop-单机版搭建)
|
1月前
|
存储 分布式计算 监控
分布式系统详解--框架(Hadoop-HDFS的HA搭建及测试)
分布式系统详解--框架(Hadoop-HDFS的HA搭建及测试)
34 0
|
1月前
|
分布式计算 资源调度 网络协议
分布式系统详解--框架(Hadoop--RPC协议)
分布式系统详解--框架(Hadoop--RPC协议)
26 0
|
1月前
|
分布式计算 Hadoop Java
分布式系统详解--框架(Hadoop--JAVA操作HDFS文件)
分布式系统详解--框架(Hadoop--JAVA操作HDFS文件)
26 0
|
1月前
|
分布式计算 Hadoop Shell
分布式系统详解--框架(Hadoop-基本shell命令)
分布式系统详解--框架(Hadoop-基本shell命令)
17 0
|
1月前
|
网络安全 数据安全/隐私保护
分布式系统详解--框架(Hadoop-Ssh免密登陆配置)
分布式系统详解--框架(Hadoop-Ssh免密登陆配置)
22 0
|
1月前
|
分布式计算 资源调度 监控
分布式系统详解--框架(Hadoop-集群搭建)
分布式系统详解--框架(Hadoop-集群搭建)
91 0