hadoop节点HDFS(Hadoop Distributed File System)数据分片

简介: 【5月更文挑战第17天】

image.png
Hadoop Distributed File System (HDFS) 在 Hadoop 中是数据的存储基石,它采用了一种分布式存储的方式来处理大规模数据集。在 HDFS 中,数据分片(Data Partitioning)是数据处理的关键步骤之一,它有助于在集群中并行处理数据。以下是关于 HDFS 数据分片的详细解释:

  1. 数据块(Block)

    • HDFS 将文件分割成多个固定大小的数据块(Block)进行存储。
    • 默认情况下,一个 Block 的大小为 128MB(但在旧版本的 Hadoop 中,这个值可能是 64MB)。
    • 如果文件大小小于 Block 大小,则该文件不会占据整个 Block 的空间。
  2. 数据分片(Data Splitting)

    • 在 Hadoop 的 MapReduce 作业中,数据分片(Splitting)是数据处理的初步阶段。
    • 数据分片是将输入数据逻辑上划分为多个片段(Splits),以便 Map 阶段可以并行处理这些片段。
    • 分片大小(Split Size)通常与 Block 大小相关,但不一定完全相等。
    • 分片的大小由多个因素决定,包括文件大小、配置的 Map 任务数量、HDFS Block 大小以及 mapred.min.split.sizemapred.max.split.size 等参数。
  3. 数据分片过程

    • 当 Hadoop 作业被提交时,JobTracker(或 ResourceManager 在 YARN 架构中)会调用 FileInputFormat 的 getSplits() 方法来确定输入数据的分片。
    • getSplits() 方法会基于文件的 Block 信息和配置参数来计算每个分片的起始和结束位置。
    • 对于每个分片,Hadoop 会启动一个 Map 任务来处理该分片的数据。
  4. 分片与 Block 的关系

    • 分片是在逻辑上对输入数据进行的划分,而 Block 是 HDFS 中物理存储数据的单位。
    • 一个分片可能包含多个 Block,也可能一个 Block 被多个分片共享。
    • 通常情况下,为了提高数据本地性和处理效率,Hadoop 会尽量将分片与 Block 对齐。
  5. 数据分片的重要性

    • 合理的数据分片能够充分利用集群的计算资源,提高数据处理的速度和效率。
    • 通过调整分片大小和数量,可以影响 Map 任务的并行度和执行效率。
    • 适当的分片策略还能减少跨节点数据传输的开销,降低网络负载。

总结来说,HDFS 的数据分片是 Hadoop 处理大规模数据集的关键步骤之一。通过将数据逻辑上划分为多个分片,Hadoop 能够在集群中并行处理这些数据,从而提高数据处理的速度和效率。

目录
相关文章
|
1月前
|
分布式计算 Kubernetes Hadoop
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
大数据-82 Spark 集群模式启动、集群架构、集群管理器 Spark的HelloWorld + Hadoop + HDFS
148 6
|
1月前
|
分布式计算 Hadoop Shell
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
Hadoop-35 HBase 集群配置和启动 3节点云服务器 集群效果测试 Shell测试
69 4
|
1月前
|
分布式计算 Hadoop Shell
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
Hadoop-36 HBase 3节点云服务器集群 HBase Shell 增删改查 全程多图详细 列族 row key value filter
57 3
|
1月前
|
分布式计算 Java Hadoop
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
Hadoop-30 ZooKeeper集群 JavaAPI 客户端 POM Java操作ZK 监听节点 监听数据变化 创建节点 删除节点
61 1
|
1月前
|
分布式计算 Hadoop Unix
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
Hadoop-28 ZooKeeper集群 ZNode简介概念和测试 数据结构与监听机制 持久性节点 持久顺序节点 事务ID Watcher机制
41 1
|
1月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
47 1
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-24 Sqoop迁移 MySQL到Hive 与 Hive到MySQL SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
84 0
|
1月前
|
SQL 分布式计算 关系型数据库
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
Hadoop-23 Sqoop 数据MySQL到HDFS(部分) SQL生成数据 HDFS集群 Sqoop import jdbc ETL MapReduce
37 0
|
1月前
|
分布式计算 资源调度 Hadoop
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
大数据-80 Spark 简要概述 系统架构 部署模式 与Hadoop MapReduce对比
64 2
|
15天前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
59 2

相关实验场景

更多