大数据平台的毕业设计01:Hadoop与离线分析

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 大数据平台的毕业设计01:Hadoop与离线分析

前言

最近有很多人问我,大数据专业有什么好的毕设项目,我就简单的回复了一下。也有直接问我要源码的....

image.png

所以就抽空写一写自己毕业设计的一个思路,大数据是我实习自学的,这个思路是我当初自己想的,就当做一份参考吧。

在我毕业那年,同学们毕业设计大多都是以Java语言开发的各种管理系统、xx商城为主,包括我刚开始的想法也是这样的。这也是计算机专业很常见的毕业设计选题。

这种选择的好处就是简单,网上模板多。动手能力强的同学,直接去github上拉下来源码,稍微修改一下,一个毕业设计项目就完成了。动手能力弱的同学,也可以使用钞能力低成本完成。

至于缺点嘛,就是这类毕设太常见了,除非UI设计和思路特别出彩,让老师眼前一亮。要不然见多识广的老师,就会带着一颗毫无波澜的内心,用空洞的眼神看完你的演示,机械般的给你打下一个及格分。

当然,对于大部分同学的内心想法就是:能过就行。也有的同学担心,自己的毕设项目和其他同学的重合度很高,老师可能会问一些细节(稀奇古怪)的问题。所以,毕设最好还是自己做,就算找的模板,也要把技术和架构搞清楚

同时,想要做一个与众不同的毕设,在技术上也一定要“花里胡哨”。

大数据毕设思路

大数据方向的毕设,归根结底还是基于大数据平台进行构思。对于管理系统、商城这种项目毕设来说,我们面向的是编程语言,而大数据主要还是还是面向平台。就像你一说大数据,别人接着就说,大数据...就是那个Hadoop吗?

是的。虽然这个回答很片面,但是对于大数据毕设来说,就是基于Hadoop来发散延伸。

我学的不是大数据专业,也曾有成为一名优(C)秀(V)的Java开发的梦想。后来,17年实习阴差阳错就接触到大数据,并开始自学大数据,所以在18年毕业的时候,就基于大数据完成了毕业设计。这里就简单说一下当初我的毕业设计流程。

  1. 在虚拟机搭建Hadoop、Hive、Kafka、Spark集群
  2. 使用Java(建议Python)采集了163w数据放入MySQL
  3. 用Flume将mysql中的数据实时写入到了Kafka中
  4. Scala开发sparkstreaming程序,读取kafka数据进行处理,然后写入Kafka
  5. 使用Flume将kafka数据写入到了HDFS,然后加载到hive进行hsql分析
  6. 使用Springboot和Vue,开发数据管理系统,对数据进行查询和图形化展示,对接了echarts和百度地图。

就很简单,很简单。大家可以在上面的思路上进行扩展。下面就展开说一下具体步骤。

大数据毕设实践

关于下文中提到的一些大数据概念,可以参考之前写的一篇大数据的文章。

0. 数据准备

大数据,大数据,数据肯定是大的无边无际。那多大才算大?自从18年负责一天1w亿条数据的接入、存储、处理工作之后,我就飘了~ 经常同事告诉我说,要接入一个大数据量的文件接口,我问他多少,他说一天一百亿条,我一般会轻飘飘地说一句,一百亿,算多吗 ~~~

其实,对于毕业设计来说,数据量并不需要那么大,数据在大数据平台中的流转,以此来模拟大数据中的ETL和实时处理,从而体现数据的价值。 那么,数据从哪里获取呢?

方法1,我们可以写一个程序来生成一些测试数据,但是这样的话,数据重合度太高,很难体现出数据分析价值。那么就采用方法二,开发爬虫进行采集网上的数据

当时我用Java开发了一个爬虫,采集了163w条POI位置数据,存到了MySQL中,完成了数据的准备工作。爬虫的开发还是推荐用Python,17年我还不会Python,后来18年开始学习Python,后来又做了很多爬虫开发工作,再后来写了爬虫系列由浅入深的学习文章,大家也可以参考一下。

1. 大数据平台搭建

欲抬手摘星望月,必先平地起高楼。

上面也说了,大数据还是围绕着平台来搞。当时我在笔记本上搭建了三台centos系统的虚拟机,主要用来搭建下面的集群。

在集群搭建之前,需要完成下列操作系统和环境的配置。

  1. 安装JDK、Scala
  2. 三台虚拟机之间进行互信操作
  3. 安装mysql数据,作为hive的元数据库

Hadoop - 基础核心

Hadoop集群作为大数据基础建设,同时也是大数据核心。其HDFS提供了分布式存储,Yarn提供了计算资源。

如果是毕设的话,可以选择一主两从的架构,即一个NameNode和两个DataNode的架构。如果想要玩的花一点,就选择HA高可用架构,即两主两从,这里就需要四台虚拟机。

关于HA,就是两个NameNode,但是一个NN处于工作状态(active),一个NN处于待命状态(standby)。你可以kill掉active的NN,然后让standby的NN接管集群。

关于HA,在大数据是随处可见的。在Hadoop生态中,集群中的多NN和多DN是HA,HDFS的副本机制也是HA,这一块在论文中还是能体现不少东西的。

下面就是Hadoop集群的NN和DN的基本信息。

image.png

image.png

Hive - 离线分析

Hive在我的毕设中的角色就是一个数据分析的工具,主要表述的是大数据ETL中L阶段,以及大数据平台的离线分析部分。

Hive是一个数据仓库,关于它的作用就是对HDFS上的数据进行离线分析,虽然它不是数据库,但是大家可以把它当做数据库来用。这里其他基础的概念就不多介绍了。

时至今日,也有很多hive的平替产品,例如号称比hive快800倍的clickhouse,以及druid,但是在应用场景方面和hive还是有一定出入的,有兴趣的可以去了解一下。

大数据在数仓方面,有很多值得玩的平台架构和一些基本概念,ETL描述的就是基于数据仓库进行的数据处理过程。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 机器学习/深度学习 SQL
大数据处理与分析技术
大数据处理与分析技术
102 2
|
1天前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
20 4
|
7天前
|
SQL 分布式计算 DataWorks
DataWorks产品测评|基于DataWorks和MaxCompute产品组合实现用户画像分析
本文介绍了如何使用DataWorks和MaxCompute产品组合实现用户画像分析。首先,通过阿里云官网开通DataWorks服务并创建资源组,接着创建MaxCompute项目和数据源。随后,利用DataWorks的数据集成和数据开发模块,将业务数据同步至MaxCompute,并通过ODPS SQL完成用户画像的数据加工,最终将结果写入`ads_user_info_1d`表。文章详细记录了每一步的操作过程,包括任务开发、运行、运维操作和资源释放,帮助读者顺利完成用户画像分析。此外,还指出了文档中的一些不一致之处,并提供了相应的解决方法。
|
5天前
|
分布式计算 DataWorks 搜索推荐
用户画像分析(MaxCompute简化版)
通过本教程,您可以了解如何使用DataWorks和MaxCompute产品组合进行数仓开发与分析,并通过案例体验DataWorks数据集成、数据开发和运维中心模块的相关能力。
38 4
|
25天前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
62 4
|
26天前
|
关系型数据库 分布式数据库 数据库
PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具
在数字化时代,企业面对海量数据的挑战,PolarDB 以其出色的性能和可扩展性,成为大数据分析的重要工具。它不仅支持高速数据读写,还通过数据分区、索引优化等策略提升分析效率,适用于电商、金融等多个行业,助力企业精准决策。
34 4
|
26天前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
169 5
|
1月前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
141 14
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
112 2
|
1月前
|
数据采集 机器学习/深度学习 搜索推荐
大数据与社交媒体:用户行为分析
【10月更文挑战第31天】在数字化时代,社交媒体成为人们生活的重要部分,大数据技术的发展使其用户行为分析成为企业理解用户需求、优化产品设计和提升用户体验的关键手段。本文探讨了大数据在社交媒体用户行为分析中的应用,包括用户画像构建、情感分析、行为路径分析和社交网络分析,以及面临的挑战与机遇。
下一篇
DataWorks