人工智能平台PAI产品使用合集之如何通过机器学习PAI 的Alink实现大量数据两两计算相关性

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。

问题一:我请教下机器学习PAI 阿里巴巴国际站 1688.com 淘宝 天猫 她们的搜索原理是一致的吧?

我请请教下机器学习PAI 搜索专家

给我澄清下我的疑惑[老板]

世面上太多跳大神了

1 阿里巴巴国际站 1688.com 淘宝 天猫 她们的搜索原理是一致的吧?

只是b2b平台更粗糙 是吗?

2 商品关键词,同样的关键词,写2遍是没有用的,对吧?

3 标题中的词序,只影响买家阅读体验,不影响系统在商品排序时的权重,对吧?



参考答案:

楼主你好,看了你的问题,我来聊两句,阿里巴巴国际站1688.com、淘宝和天猫的搜索原理类似,但也存在一定差异,而且不同的平台可能对搜索算法的权重、数据来源、排序规则等方面有所不同,因为它们面向的用户群体和商品类型不同。

因为在商品关键词的搜索中,重复写关键词可能会降低搜索的效果,还有标题中的词序,对搜索引擎来说是有影响的。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574301



问题二:机器学习PAI的1.6.1开源包依旧不全怎么办

机器学习PAI的1.6.1开源包依旧不全怎么办



参考答案:

配置下scala



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574204



问题三:机器学习PAI这个全表统计的结果二维表,我如何写到output?

这个全表统计的结果二维表,我如何写到output?比如像其他BatchOperator一样我可以linkTo到mysql表?

https://alinklab.cn/manual/summarizerbatchop.html



参考答案:

要将机器学习PAI全表统计的结果二维表写入output,你可以按照以下步骤进行操作:

  1. 首先,确保你已经安装了机器学习PAI(也称为MaxCompute或ODPS)的开发环境。
  2. 在你的代码中,使用适当的编程语言和库连接到机器学习PAI平台。具体的连接方式取决于你使用的编程语言和开发环境。
  3. 执行你的全表统计查询,并将结果存储在一个二维表中。这可以通过编写适当的SQL查询语句来实现。例如,如果你要统计名为"my_table"的表中的数据,可以使用以下SQL查询语句:
SELECT column1, column2, ...
FROM my_table;
  1. 这将返回一个包含指定列的结果集。
  2. 将查询结果存储在合适的数据结构中,如一个二维数组或列表。具体的实现方式取决于你使用的编程语言和库。
  3. 最后,将结果写入output。根据你的需求,可以选择将结果输出到文件、数据库或其他目标位置。具体的写入方式取决于你使用的编程语言和库。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574188



问题四:机器学习PAI啥时候升级支持flink15.x?

机器学习PAI啥时候升级支持flink15.x?



参考答案:

楼主你好,据我所知,目前阿里云机器学习PAI已经支持Flink 1.11版本,但是目前还不确定是否会支持Flink 1.5版本,你可以留意关注阿里云官方的相关公告和更新。



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574184



问题五:有没有人知道机器学习PAI 的Alink怎么实现大量数据两两计算相关性?

有没有人知道Alink怎么实现大量数据两两计算相关性,就是我已有大量文件两两匹配好了,想每两个输出一个相关性结果,单线程计算太慢了,所以想看看spark或者flink有没有啥好的解决方案,本来打算用spark的,但是rdd中没法嵌套rdd,而我看ALink的介绍,相关性算子CorrelationBatchOp好像也是单线程的,我设置了 BatchOperator.setParallelism(4);好像也没啥用,想在flink stream的算子中使用CorrelationBatchOp好像也不行



参考答案:

可以看看向量最近邻https://www.yuque.com/pinshu/alink_doc/vectornearestneighbortrainbatchop 。 或者写个多线程调用



关于本问题的更多回答可点击进行查看:

https://developer.aliyun.com/ask/574183

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2月前
|
机器学习/深度学习 人工智能 物联网
通义灵码在人工智能与机器学习领域的应用
通义灵码不仅在物联网领域表现出色,还在人工智能、机器学习、金融、医疗和教育等领域展现出广泛应用前景。本文探讨了其在这些领域的具体应用,如模型训练、风险评估、医疗影像诊断等,并总结了其提高开发效率、降低门槛、促进合作和推动创新的优势。
通义灵码在人工智能与机器学习领域的应用
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与情感计算:AI如何理解人类情感
人工智能与情感计算:AI如何理解人类情感
38 20
|
23天前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
85 27
|
1月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
51 12
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能与机器学习的融合之旅
【10月更文挑战第37天】本文将探讨AI和机器学习如何相互交织,共同推动技术发展的边界。我们将深入分析这两个概念,了解它们是如何互相影响,以及这种融合如何塑造我们的未来。文章不仅会揭示AI和机器学习之间的联系,还会通过实际案例展示它们如何协同工作,以解决现实世界的问题。
|
2月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
109 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与机器学习的融合之路
在本文中,我们将探讨人工智能(AI)与机器学习(ML)之间的紧密联系以及它们如何共同推动技术革新。我们将深入分析这两种技术的基本概念、发展历程和当前的应用趋势,同时讨论它们面临的挑战和未来的发展方向。通过具体案例研究,我们旨在揭示AI与ML结合的强大潜力,以及这种结合如何为各行各业带来革命性的变化。
48 0
|
2月前
|
机器学习/深度学习 数据采集 人工智能
人工智能与机器学习:解锁数据洞察力的钥匙
人工智能与机器学习:解锁数据洞察力的钥匙
|
1月前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
73 11
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
89 0

相关产品

  • 人工智能平台 PAI