阿里云人工智能平台图像视频特征提取

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 本文介绍了图像与视频特征提取技术在人工智能和计算机视觉中的应用,涵盖图像质量评分、人脸属性分析、年龄分析、图像多标签打标、图文视频动态分类打标、视频质量评分及视频分类打标。通过深度学习模型如CNN和RNN,这些技术能从海量数据中挖掘有价值信息,为图像分类、目标检测、视频推荐等场景提供支持,提升分析精度与效率。

引言

在人工智能和计算机视觉领域,特征提取是图像与视频分析的核心环节,它关乎后续任务的准确性和效率。借助先进的特征提取技术,我们可以从海量的图像与视频数据中挖掘出有价值的信息,为图像分类、目标检测、视频推荐等应用场景提供有力支撑。本文将围绕图像质量分、人脸属性、年龄、图像多标签、图文视频动态分类打标、视频质量评分以及视频分类打标等特征提取维度展开详细探讨.
文章内容来自:多媒体分析:Python SDK使用说明 文中提供多媒体分析的python接口。

图像特征提取

图像质量评分

图像质量评分是对图像视觉质量的量化评估,其结果通常以一个分数呈现,范围在[0, 100]之间。高质量的图像应具备清晰的细节、准确的色彩以及良好的对比度。在实际应用中,图像质量评分可用于筛选出质量不佳的图片,以提升用户体验或优化存储资源的分配.
图像质量评分的提取过程涉及多个维度的分析。首先,算法会检测图像的模糊程度,通过计算图像的边缘锐度和对比度来评估其清晰度。其次,色彩准确性也是关键指标之一,算法会分析图像的色域、色差以及色彩饱和度等参数,确保图像色彩的真实性和一致性.此外,噪声水平的检测也至关重要,算法会识别图像中的噪点数量和分布情况,从而评估图像的纯净度.
例如,基于深度学习的图像质量评分模型可以利用卷积神经网络(CNN)提取图像的多尺度特征,通过训练学习到图像质量与特征之间的映射关系,最终输出一个准确的质量评分.这种方法能够有效应对复杂场景下的图像质量评估,具有较高的鲁棒性和适应性.

人脸属性分析

人脸属性分析旨在识别和描述人脸的各类特征,包括脸型、发色、发型、性别、年龄等.这些属性信息在人脸识别、人像美化、个性化推荐等领域具有广泛的应用价值.
在人脸属性特征提取过程中,算法首先会进行人脸检测,定位图像中的人脸区域.然后,利用深度学习模型对人脸图像进行特征编码,提取出与人脸属性相关的特征向量.例如,对于脸型分析,模型会关注人脸轮廓的形状特征;对于发色识别,则会提取与头发颜色相关的色彩特征.
深度学习模型,如卷积神经网络(CNN)和生成对抗网络(GAN),在人脸属性分析中表现出色.它们能够从大量标注数据中学习到人脸属性的复杂模式和规律,实现高精度的属性分类和识别.此外,多任务学习方法也可以用于人脸属性分析,通过同时学习多个相关任务,共享特征表示,提高模型的泛化能力和效率.

年龄分析

年龄分析是对图像中人脸年龄区间的识别和预测.准确的年龄分析对于个性化推荐、目标人群分析等场景至关重要.例如,在广告投放中,根据目标人群的年龄特征,可以精准推送符合其兴趣和需求的广告内容.
年龄特征提取通常基于人脸图像的纹理、形状和颜色等信息.随着年龄的增长,人脸的皮肤纹理会发生变化,如皱纹的出现和加深;面部轮廓也会有所改变,如下巴的轮廓变得更加明显;此外,肤色也会因年龄不同而有所差异.算法会利用这些特征信息,结合深度学习模型进行年龄预测.
卷积神经网络(CNN)是年龄分析中常用的模型之一.通过构建多层卷积和池化层,模型能够提取人脸图像的深层次特征,并通过全连接层进行年龄区间的分类.此外,还可以采用多尺度特征融合的方法,结合不同尺度的特征信息,提高年龄分析的准确性.

图像多标签打标

图像多标签打标是对图像内容进行多维度描述的过程,为每张图像分配多个标签,这些标签可以涵盖场景、物体、动作、风格等多个方面.例如,一张户外运动的图片可能被标注为“户外”、“运动”、“阳光”、“草地”等标签.
在图像多标签特征提取中,算法需要对图像的全局和局部特征进行综合分析.全局特征可以反映图像的整体场景和氛围,如通过图像的颜色直方图、纹理特征等来描述图像的宏观特征;局部特征则关注图像中的具体物体和细节,如通过物体检测算法识别图像中的各个物体,并提取其形状、颜色、纹理等特征.
深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN)的结合,可以有效地进行图像多标签打标.CNN负责提取图像的视觉特征,而RNN则可以对这些特征进行序列化处理,捕捉标签之间的关联关系,从而实现准确的多标签分类.

图文视频动态分类打标

图文视频动态分类打标是对包含多模态内容的动态或帖子进行分类和打标的过程.它综合考虑文本、图片和视频等多种信息,为内容提供准确的分类标签和描述标签.例如,在社交媒体平台上,一条包含美食图片、相关文字描述和制作视频的动态,可以被分类为“美食”、“烹饪”等标签.
在图文视频动态分类打标中,特征提取是关键步骤.对于文本内容,可以采用自然语言处理技术,如词嵌入、文本分类模型等,提取文本的语义特征;对于图片,可以利用卷积神经网络(CNN)提取其视觉特征;对于视频,除了提取视频帧的视觉特征外,还可以提取音频特征和视频的时序特征.
多模态融合技术在图文视频动态分类打标中发挥着重要作用.通过将不同模态的特征进行融合,可以充分利用各模态之间的互补信息,提高分类和打标的准确性.例如,可以采用注意力机制来加权不同模态的特征,突出对分类和打标任务更有贡献的信息.

视频特征提取

视频质量评分

视频质量评分是对视频整体视觉质量的评估,其结果同样以一个分数呈现,范围在[0, 100]之间.高质量的视频应具备清晰的图像、流畅的播放、准确的色彩以及良好的音频效果.
在视频质量评分的特征提取过程中,算法会从多个维度进行分析.首先,图像质量是基础,算法会评估视频中每一帧图像的清晰度、对比度、色彩准确性等特征;其次,视频的帧率和时序连贯性也至关重要,算法会检测视频的平均帧率、帧间差异度等参数,以评估视频的流畅性和稳定性;此外,音频质量也是一个重要指标,算法会分析音频的清晰度、音量、噪声水平等特征.
深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN)的结合,可以用于视频质量评分.CNN负责提取视频帧的视觉特征,而RNN则可以捕捉视频的时序信息,综合评估视频的整体质量.

视频分类打标

视频分类打标是对视频内容进行分类和打标的过程,为视频分配准确的类别标签和描述标签.例如,一条旅游视频可以被分类为“旅游”、“风景”等标签.
在视频分类打标的特征提取中,算法需要对视频的视觉内容和音频内容进行综合分析.对于视觉内容,可以利用卷积神经网络(CNN)提取视频帧的特征,如物体、场景、动作等;对于音频内容,可以提取音频的频谱特征、声纹特征等.
此外,视频的时序特征也是分类打标的重要依据.算法可以通过分析视频帧之间的时序关系,捕捉视频中的动态变化和连贯性,从而更准确地进行分类和打标.例如,循环神经网络(RNN)和长短期记忆网络(LSTM)等模型可以有效地处理视频的时序信息,实现高精度的视频分类打标.

结论

图像与视频特征提取技术在人工智能和计算机视觉领域具有重要意义.通过准确提取图像质量分、人脸属性、年龄、图像多标签、图文视频动态分类打标、视频质量评分以及视频分类打标等特征,我们可以为图像与视频的分析、理解和应用提供强有力的支持.随着深度学习等技术的不断发展,特征提取的精度和效率将进一步提升,为相关领域的研究和应用带来更广阔的前景.

相关实践学习
使用PAI+LLaMA Factory微调Qwen2-VL模型,搭建文旅领域知识问答机器人
使用PAI和LLaMA Factory框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2月前
|
机器学习/深度学习 人工智能 供应链
决策智能是新的人工智能平台吗?
决策智能融合数据、决策与行动,通过AI与自动化技术提升企业决策质量与效率,支持从辅助到自动化的多级决策模式,推动业务敏捷性与价值转化。
|
6月前
|
人工智能
复旦大学X阿里云:启动人工智能教育教学新合作丨云工开物
在复旦大学建校120周年之际,阿里云与复旦达成人工智能教育教学合作,通过算力资源、实验工具及课程共建等方式支持“AI大课2.0”。此次合作深化了双方在AI for Science领域的实践,从科研拓展至教育领域。自2023年起,双方共建CFFF智算平台,服务超5200名师生;2024年,“云工开物”计划助力复旦AI课程体系建设;2025年启动大模型认证合作,推动AI教育新模式。未来,阿里云将持续赋能复旦的人才培养与教育创新。
|
7月前
|
人工智能 云计算 开发者
南京大学与阿里云联合启动人工智能人才培养合作计划,已将通义灵码引入软件学院课程体系
近日,南京大学与阿里云宣布启动人工智能人才培养合作计划,共同培养适应未来技术变革、具备跨学科思维的AI创新人才。
|
4月前
|
机器学习/深度学习 人工智能 运维
阿里云PAI人工智能平台介绍、优势及收费标准,手动整理
阿里云人工智能平台PAI是面向开发者和企业的机器学习与深度学习工程平台,提供数据标注、模型构建、训练、部署及推理优化等全链路服务。内置140+优化算法,支持PyTorch、TensorFlow等多种框架,具备高性能训练与推理能力,适用于自动驾驶、金融风控、智能推荐、智慧医疗等多个行业场景。PAI提供零代码开发、可视化建模、大模型一键部署等功能,助力企业快速构建AI应用。支持多种购买方式,如按量付费、预付费等,满足不同业务需求。
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
阿里云人工智能平台 PAI 开源 EasyDistill 框架助力大语言模型轻松瘦身
本文介绍了阿里云人工智能平台 PAI 推出的开源工具包 EasyDistill。随着大语言模型的复杂性和规模增长,它们面临计算需求和训练成本的障碍。知识蒸馏旨在不显著降低性能的前提下,将大模型转化为更小、更高效的版本以降低训练和推理成本。EasyDistill 框架简化了知识蒸馏过程,其具备多种功能模块,包括数据合成、基础和进阶蒸馏训练。通过数据合成,丰富训练集的多样性;基础和进阶蒸馏训练则涵盖黑盒和白盒知识转移策略、强化学习及偏好优化,从而提升小模型的性能。
|
6月前
|
人工智能 弹性计算 程序员
青岛城市学院 × 阿里云 | 云工开物「人工智能+」训练营圆满落幕!
人工智能浪潮席卷而来,大模型、智能编程等前沿技术不断革新,已经成为推动全球经济社会发展和人类文明进步的重要力量。人工智能的发展不仅改变了产业结构,同时也对高等教育的人才培养提出了新的要求,并进一步推动着教育新生态的重构。
|
6月前
|
人工智能
生成式人工智能认证(GAI认证)官网 - 全国统一认证中文服务平台上线
生成式人工智能(AI)正深刻改变职场规则,但系统化学习相关技术成为难题。近日,由全球知名教育公司培生推出的生成式人工智能认证(GAI认证)中文官网正式上线,为专业人士和学习者提供了权威解决方案。该认证涵盖核心技能、提示工程、伦理合规等内容,助力持证者紧跟技术前沿,在职场中脱颖而出。全国统一认证平台提供便捷报名与在线考试服务,考后快速出成绩并颁发证书。行动起来,开启AI职业新篇章!
|
7月前
|
存储 人工智能 开发者
浙江大学与阿里云宣布合作人工智能通识课,通义灵码系列课程率先落地
浙江大学与阿里云联合宣布共建人工智能通识课,将在“AI+行业”课程方面从产、学、研角度,共同围绕教育、法律、设计、金融、人文和艺术等多个重点学科方向,将真实产业案例深度融入浙江大学人工智能通识课程体系。
|
7月前
|
存储 人工智能
浙江大学与阿里云联合宣布共建人工智能通识课|阿里云云工开物合作动态
浙江大学与阿里云联合共建人工智能通识课,涵盖教育、法律、设计等多学科方向,将产业案例融入课程体系。阿里云开放大模型认证课程资源,提供云服务器、AI算力等支持,并通过“云工开物”计划为学生提供计算资源。双方还将发起“智能体创新大赛”,推动技术创新与人才培养。浙大是国内首批开展全校人工智能通识课的顶尖高校之一,2024年起“人工智能基础”成为全校本科生必修课。