大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,1000CU*H 3个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(正在更新!)

章节内容

上节我们完成了如下的内容:


Sink 的基本概念等内容

Sink的相关信息 配置与使用

Sink案例写入Redis

JDBC Sink

在 Apache Flink 中,通过 JDBC Sink,可以将处理后的数据写入到 MySQL 数据库中。这对于将实时处理的数据持久化或与其他系统进行集成非常有用。


Flink JDBC Sink 简介

Flink 提供了 JdbcSink,它是基于 JDBC 协议的 Sink,可以将数据写入各种关系型数据库,包括 MySQL。在使用 JDBC Sink 时,需要提供数据库连接信息和 SQL 语句,通过这些信息,Flink 将数据流中的记录插入或更新到 MySQL 表中。


Flink 到 MySQL 的基本步骤

将数据流写入 MySQL 的步骤主要包括以下几点:


依赖库配置:确保在项目中引入了 Flink 和 MySQL 相关的依赖库,通常需要配置 Maven 或 Gradle。

定义数据源和数据流:创建并处理数据流。

配置 JDBC Sink:提供数据库的连接信息和插入 SQL 语句。

启动任务:将数据流写入 MySQL。

优化建议

在实际项目中,向 MySQL 插入大量数据时,应考虑以下优化策略:


批量插入:通过 JdbcExecutionOptions 配置批量插入,可以大幅提升写入性能。

连接池:对于高并发的写入操作,建议使用连接池来减少数据库连接开销。

索引优化:为插入的表配置合适的索引,可以提高查询性能,但在大量写入时,索引可能会降低- 插入速度,因此需要权衡。

数据分片:对于非常大规模的数据,可以考虑将数据分片并行写入不同的 MySQL 实例或分区表中。

案例:流数据下沉到MySQL

添加依赖

<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>8.0.28</version>
</dependency>

编写代码

一个Person的类,对应MySQL中的一张表的字段。

模拟几条数据流,写入到 MySQL中。

package icu.wzk;


import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;

public class SinkSqlTest {

    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStreamSource<Person> data = env.getJavaEnv().fromElements(
                new Person("wzk", 18, 1),
                new Person("icu", 20, 1),
                new Person("wzkicu", 13, 2)
        );
        data.addSink(new MySqlSinkFunction());

        env.execute();
    }

    public static class MySqlSinkFunction extends RichSinkFunction<Person> {

        private PreparedStatement preparedStatement = null;

        private Connection connection = null;

        @Override
        public void open(Configuration parameters) throws Exception {
            String url = "jdbc:mysql://h122.wzk.icu:3306/flink-test?useUnicode=true&characterEncoding=UTF-8&serverTimezone=UTC";
            String username = "hive";
            String password = "hive@wzk.icu";
            connection = DriverManager.getConnection(url, username, password);
            String sql = "INSERT INTI PERSON(name, age, sex) VALUES(?, ?, ?)";
            preparedStatement = connection.prepareStatement(sql);
        }

        @Override
        public void invoke(Person value, Context context) throws Exception {
            preparedStatement.setString(1, value.getName());
            preparedStatement.setInt(2, value.getAge());
            preparedStatement.setInt(3, value.getSex());
            preparedStatement.executeUpdate();
        }

        @Override
        public void close() throws Exception {
            if (null != connection) {
                connection.close();
            }
            if (null != preparedStatement) {
                preparedStatement.close();
            }
        }
    }

    public static class Person {
        private String name;
        private Integer age;
        private Integer sex;

        public Person() {

        }

        public Person(String name, Integer age, Integer sex) {
            this.name = name;
            this.age = age;
            this.sex = sex;
        }

        public String getName() {
            return name;
        }

        public void setName(String name) {
            this.name = name;
        }

        public Integer getAge() {
            return age;
        }

        public void setAge(Integer age) {
            this.age = age;
        }

        public Integer getSex() {
            return sex;
        }

        public void setSex(Integer sex) {
            this.sex = sex;
        }
    }
}

数据库配置

我们新建一张表出来,person表,里边有我们需要的字段。

运行代码

我们运行代码,等待运行结束。

查看结果

查看数据库中的数据,我们可以看到刚才模拟的数据已经成功写入了。

案例:写入到Kafka

编写代码

package icu.wzk;

import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.scala.DataStream;
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;

public class SinkKafkaTest {

    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        DataStream<String> data = env.socketTextStream("localhost", 9999, '\n', 0);
        String brokerList = "h121.wzk.icu:9092";
        String topic = "flink_test";
        FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>(brokerList, topic, new SimpleStringSchema());
        data.addSink(producer);
        env.execute("SinkKafkaTest");
    }

}

运行代码

启动一个 nc

nc -lk 9999
• 1

我们通过回车的方式,可以发送数据。

Java 程序中等待

查看结果

我们登录到服务器查看信息

./kafka-console-consumer.sh --bootstrap-server h121.wzk.icu:9092 --topic flink_test -

可以看到刚才的数据已经写入了:

目录
相关文章
|
1月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
282 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
消息中间件 存储 传感器
186 0
|
5月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
217 12
|
6月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
480 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
817 0
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用合集之支持sink到多分区的kafka ,还能保持有序吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
131 0
|
消息中间件 Java Kafka
Flink的sink实战之二:kafka
实践如何将flink数据集sink到kafka
454 0
Flink的sink实战之二:kafka
|
消息中间件 Java Kafka
Flink的sink实战之二:kafka
实践如何将flink数据集sink到kafka
1098 0
Flink的sink实战之二:kafka
|
3月前
|
存储 分布式计算 数据处理
「48小时极速反馈」阿里云实时计算Flink广招天下英雄
阿里云实时计算Flink团队,全球领先的流计算引擎缔造者,支撑双11万亿级数据处理,推动Apache Flink技术发展。现招募Flink执行引擎、存储引擎、数据通道、平台管控及产品经理人才,地点覆盖北京、杭州、上海。技术深度参与开源核心,打造企业级实时计算解决方案,助力全球企业实现毫秒洞察。
458 0
「48小时极速反馈」阿里云实时计算Flink广招天下英雄

推荐镜像

更多