大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现

简介: 大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(正在更新!)

章节内容

上节我们完成了如下的内容:


Flink CEP 核心组件

CEP 的应用场景

CEP 的优势

超时事件提取

当一个模式通过within关键字定义了检测窗口时间时,部分事件序列可能因为超过窗口长度而被丢弃,为了能够处理这些超时的部分匹配,select和flatSelectAPI调用允许制定超时处理程序。


FlinkCEP开发流程

DataSource中的数据转换为DataStream

定义Pattern,并将DataStream和Pattern组合转换为PatternStream。

PatternStream 经过 Select、Process 等算子转换为 DataStream

再次转换为 DataStream 经过处理后,Sink到目标库。

SELECT 方法:

SingleOutputStreamOperator<PayEvent> result =
    patternStream.select(orderTimeoutOutput, new PatternTimeoutFunction<PayEvent, PayEvent>() {
    @Override
    public PayEvent timeout(Map<String, List<PayEvent>> map, long l) throws Exception {
        return map.get("begin").get(0);
    }
}, new PatternSelectFunction<PayEvent, PayEvent>() {
    @Override
    public PayEvent select(Map<String, List<PayEvent>> map) throws Exception {
        return map.get("pay").get(0);
    }
});

对检测到的序列模式序列应用选择函数,对于每个模式序列,调用提供的 PatternSelectFunction,模式选择函数只能产生一个结果元素。

对超时的部分模式序列应用超时函数,对于每个部分模式序列,调用提供的 PatternTimeoutFunction,模式超时函数只能产生一个结果元素。

你可以在使用相同 OutputTag 进行 Select 操作 SingleOutputStreamOperator上获得SingleOutputStreamOperator生成的超时数据流。


非确定有限自动机

FlinkCEP 在运行时会将用户的逻辑转换为这样一个 NFA Graph(NFA对象)

所以有限状态机的工作过程,就是从开始状态,根据不同的输入,自动进行转换的过程。

上图中的状态机的功能,是检测二进制数是否含有偶数个0。从图上可以看出,输入只有1和0两种。

从S1状态开始,只有输入0才会转换到S2状态,同样S2状态下只有输入0才会转换到S1。所以,二进制输入完毕,如果满足最终状态,也就是最后停在S1状态,那么输入的二进制数就含有偶数个0。


CEP开发流程

FlinkCEP开发流程:


DataSource中数据转换为DataStream、Watermark、keyby

定义Pattern,并将DataStream和Pattern组合转换为PatternStream

PatternStream经过select、process等算子转换为 DataStream

再次转换为 DataStream 经过处理后,Sink到目标库

添加依赖

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-cep_2.12</artifactId>
    <version>${flink.version}</version>
</dependency>

案例1:恶意登录检测

找出5秒内,连续登录失败的账号

以下是数据:

new CepLoginBean(1L, "fail", 1597905234000L),
new CepLoginBean(1L, "success", 1597905235000L),
new CepLoginBean(2L, "fail", 1597905236000L),
new CepLoginBean(2L, "fail", 1597905237000L),
new CepLoginBean(2L, "fail", 1597905238000L),
new CepLoginBean(3L, "fail", 1597905239000L),
new CepLoginBean(3L, "success", 1597905240000L)

整体思路

  • 获取到数据
  • 在数据源上做Watermark
  • 在Watermark上根据ID分组keyBy
  • 做出模式Pattern
  • 在数据流上进行模式匹配
  • 提取匹配成功的数据

编写代码

package icu.wzk;

import org.apache.flink.api.common.eventtime.*;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.cep.CEP;
import org.apache.flink.cep.PatternStream;
import org.apache.flink.cep.functions.PatternProcessFunction;
import org.apache.flink.cep.pattern.Pattern;
import org.apache.flink.cep.pattern.conditions.IterativeCondition;
import org.apache.flink.streaming.api.TimeCharacteristic;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.KeyedStream;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.util.Collector;

import java.util.List;
import java.util.Map;


public class FlinkCepLoginTest {

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
        env.setParallelism(1);
        DataStreamSource<CepLoginBean> data = env.fromElements(
                new CepLoginBean(1L, "fail", 1597905234000L),
                new CepLoginBean(1L, "success", 1597905235000L),
                new CepLoginBean(2L, "fail", 1597905236000L),
                new CepLoginBean(2L, "fail", 1597905237000L),
                new CepLoginBean(2L, "fail", 1597905238000L),
                new CepLoginBean(3L, "fail", 1597905239000L),
                new CepLoginBean(3L, "success", 1597905240000L)
        );
        SingleOutputStreamOperator<CepLoginBean> watermarks = data
                .assignTimestampsAndWatermarks(new WatermarkStrategy<CepLoginBean>() {

                    @Override
                    public WatermarkGenerator<CepLoginBean> createWatermarkGenerator(WatermarkGeneratorSupplier.Context context) {
                        return new WatermarkGenerator<CepLoginBean>() {

                            long maxTimestamp = Long.MAX_VALUE;
                            long maxOutOfOrderness = 500L;

                            @Override
                            public void onEvent(CepLoginBean event, long eventTimestamp, WatermarkOutput output) {
                                maxTimestamp = Math.max(maxTimestamp, event.getTimestamp());
                            }

                            @Override
                            public void onPeriodicEmit(WatermarkOutput output) {
                                output.emitWatermark(new Watermark(maxTimestamp - maxOutOfOrderness));
                            }
                        };
                    }
                }.withTimestampAssigner((element, recordTimestamp) -> element.getTimestamp())
                );
        KeyedStream<CepLoginBean, Long> keyed = watermarks
                .keyBy(new KeySelector<CepLoginBean, Long>() {
                    @Override
                    public Long getKey(CepLoginBean value) throws Exception {
                        return value.getUserId();
                    }
                });
        Pattern<CepLoginBean, CepLoginBean> pattern = Pattern
                .<CepLoginBean>begin("start")
                .where(new IterativeCondition<CepLoginBean>() {
                    @Override
                    public boolean filter(CepLoginBean cepLoginBean, Context<CepLoginBean> context) throws Exception {
                        return cepLoginBean.getOperation().equals("fail");
                    }
                })
                .next("next")
                .where(new IterativeCondition<CepLoginBean>() {
                    @Override
                    public boolean filter(CepLoginBean cepLoginBean, Context<CepLoginBean> context) throws Exception {
                        return cepLoginBean.getOperation().equals("fail");
                    }
                })
                .within(Time.seconds(5));
        PatternStream<CepLoginBean> patternStream = CEP.pattern(keyed, pattern);
        SingleOutputStreamOperator<CepLoginBean> process = patternStream
                .process(new PatternProcessFunction<CepLoginBean, CepLoginBean>() {
                    @Override
                    public void processMatch(Map<String, List<CepLoginBean>> map, Context context, Collector<CepLoginBean> collector) throws Exception {
                        System.out.println("map: " + map);
                        List<CepLoginBean> start = map.get("start");
                        collector.collect(start.get(0));
                    }
                });
        process.print();
        env.execute("FlinkCepLoginTest");
    }

}


class CepLoginBean {


    private Long userId;

    private String operation;

    private Long timestamp;

    public CepLoginBean(Long userId, String operation, Long timestamp) {
        this.userId = userId;
        this.operation = operation;
        this.timestamp = timestamp;
    }

    public Long getUserId() {
        return userId;
    }

    public void setUserId(Long userId) {
        this.userId = userId;
    }

    public String getOperation() {
        return operation;
    }

    public void setOperation(String operation) {
        this.operation = operation;
    }

    public Long getTimestamp() {
        return timestamp;
    }

    public void setTimestamp(Long timestamp) {
        this.timestamp = timestamp;
    }

    @Override
    public String toString() {
        return "CepLoginBean{" +
                "userId=" + userId +
                ", operation='" + operation + '\'' +
                ", timestamp=" + timestamp +
                '}';
    }
}

运行结果

可以看到程序输出:

map: {start=[CepLoginBean{userId=2, operation='fail', timestamp=1597905236000}], next=[CepLoginBean{userId=2, operation='fail', timestamp=1597905237000}]}
CepLoginBean{userId=2, operation='fail', timestamp=1597905236000}
map: {start=[CepLoginBean{userId=2, operation='fail', timestamp=1597905237000}], next=[CepLoginBean{userId=2, operation='fail', timestamp=1597905238000}]}
CepLoginBean{userId=2, operation='fail', timestamp=1597905237000}

Process finished with exit code 0

运行截图如下所示:

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
目录
相关文章
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
1040 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
10月前
|
关系型数据库 MySQL 大数据
大数据新视界--大数据大厂之MySQL 数据库课程设计:MySQL 数据库 SQL 语句调优的进阶策略与实际案例(2-2)
本文延续前篇,深入探讨 MySQL 数据库 SQL 语句调优进阶策略。包括优化索引使用,介绍多种索引类型及避免索引失效等;调整数据库参数,如缓冲池、连接数和日志参数;还有分区表、垂直拆分等其他优化方法。通过实际案例分析展示调优效果。回顾与数据库课程设计相关文章,强调全面认识 MySQL 数据库重要性。为读者提供综合调优指导,确保数据库高效运行。
|
SQL 存储 大数据
Flink 基础详解:大数据处理的强大引擎
Apache Flink 是一个分布式流批一体化的开源平台,专为大规模数据处理设计。它支持实时流处理和批处理,具有高吞吐量、低延迟特性。Flink 提供统一的编程抽象,简化大数据应用开发,并在流处理方面表现卓越,广泛应用于实时监控、金融交易分析等场景。其架构包括 JobManager、TaskManager 和 Client,支持并行度、水位线、时间语义等基础属性。Flink 还提供了丰富的算子、状态管理和容错机制,如检查点和 Savepoint,确保作业的可靠性和一致性。此外,Flink 支持 SQL 查询和 CDC 功能,实现实时数据捕获与同步,广泛应用于数据仓库和实时数据分析领域。
9595 32
|
11月前
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
探索Flink动态CEP:杭州银行的实战案例
483 5
zdl
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
632 56
|
消息中间件 JSON 数据库
探索Flink动态CEP:杭州银行的实战案例
本文由杭州银行大数据工程师唐占峰、欧阳武林撰写,介绍Flink动态CEP的定义、应用场景、技术实现及使用方式。Flink动态CEP是基于Flink的复杂事件处理库,支持在不重启服务的情况下动态更新规则,适应快速变化的业务需求。文章详细阐述了其在反洗钱、反欺诈和实时营销等金融领域的应用,并展示了某金融机构的实际应用案例。通过动态CEP,用户可以实时调整规则,提高系统的灵活性和响应速度,降低维护成本。文中还提供了具体的代码示例和技术细节,帮助读者理解和使用Flink动态CEP。
1664 3
探索Flink动态CEP:杭州银行的实战案例
|
数据处理 数据安全/隐私保护 流计算
Flink 三种时间窗口、窗口处理函数使用及案例
Flink 是处理无界数据流的强大工具,提供了丰富的窗口机制。本文介绍了三种时间窗口(滚动窗口、滑动窗口和会话窗口)及其使用方法,包括时间窗口的概念、窗口处理函数的使用和实际案例。通过这些机制,可以灵活地对数据流进行分析和计算,满足不同的业务需求。
1615 27
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
417 1
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
262 1
|
5月前
|
机器学习/深度学习 传感器 分布式计算
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
数据才是真救命的:聊聊如何用大数据提升灾难预警的精准度
380 14