[flink 实时流基础]源算子和转换算子

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: [flink 实时流基础]源算子和转换算子

1. 源算子 Source

Flink可以从各种来源获取数据,然后构建DataStream进行转换处理。一般将数据的输入来源称为数据源(data source),而读取数据的算子就是源算子(source operator)。所以,source就是我们整个处理程序的输入端。

在Flink1.12以前,旧的添加source的方式,是调用执行环境的addSource()方法:

DataStream stream = env.addSource(…);

方法传入的参数是一个“源函数”(source function),需要实现SourceFunction接口。

从Flink1.12开始,主要使用流批统一的新Source架构:

DataStreamSource stream = env.fromSource(…)

Flink直接提供了很多预实现的接口,此外还有很多外部连接工具也帮我们实现了对应的Source,通常情况下足以应对我们的实际需求。

1. 从集合读
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        // 1. 从集合读
//        DataStreamSource<Integer> source = env.fromCollection(Arrays.asList(1, 2, 3));

        // 2. 直接填元素
        DataStreamSource<Integer> source = env.fromElements(1, 2, 3, 4);

        source.print();

        env.execute();
    }
2. 从文件读取
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-files</artifactId>
      <version>${flink.version}</version>
    </dependency>

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        FileSource<String> source = FileSource.forRecordStreamFormat(
            new TextLineInputFormat(),
            new Path("input/world.txt"))
            .build();

        env
            .fromSource(source, WatermarkStrategy.noWatermarks(), "fileSource")
            .print();


        env.execute();
    }
3. 从 socket 读取
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStreamSource<String> source = env.socketTextStream("localhost", 7777);
        source.print();


        env.execute();
    }

可以使用 nc -l 7777创建一个监听链接的 tcp

4. 从 kafka 读取
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-kafka</artifactId>
      <version>${flink.version}</version>
    </dependency>
public static void main(String[] args) throws Exception {

        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
            .setBootstrapServers("hadoop102:9092")
            .setTopics("topic_1")
            .setGroupId("atguigu")
            .setStartingOffsets(OffsetsInitializer.latest())
            .setValueOnlyDeserializer(new SimpleStringSchema()) 
            .build();

        DataStreamSource<String> stream = env.fromSource(kafkaSource, WatermarkStrategy.noWatermarks(), "kafka-source");

        stream.print("Kafka");

        env.execute();
    }
5. 从数据生成器读取数据
    <dependency>
      <groupId>org.apache.flink</groupId>
      <artifactId>flink-connector-datagen</artifactId>
      <version>${flink.version}</version>
    </dependency>
 public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        env.setParallelism(1);

        DataGeneratorSource<String> dataGeneratorSource = new DataGeneratorSource<>(new GeneratorFunction<Long, String>() {
            @Override
            public String map(Long value) throws Exception {
                return "Number:" + value;
            }
        }, 10, // 自动生成的数字序列
            RateLimiterStrategy.perSecond(10), // 限速策略,每秒生成10条
            Types.STRING // 返回类型
        );


        env.fromSource(dataGeneratorSource, WatermarkStrategy.noWatermarks(), "datagenerator").print();


        env.execute();


    }

2. 转换算子

数据源读入数据之后,我们就可以使用各种转换算子,将一个或多个DataStream转换为新的DataStream。

基本转换算子(map/ filter/ flatMap)

map是大家非常熟悉的大数据操作算子,主要用于将数据流中的数据进行转换,形成新的数据流。简单来说,就是一个“一一映射”,消费一个元素就产出一个元素。


filter转换操作,顾名思义是对数据流执行一个过滤,通过一个布尔条件表达式设置过滤条件,对于每一个流内元素进行判断,若为true则元素正常输出,若为false则元素被过滤掉。


flatMap操作又称为扁平映射,主要是将数据流中的整体(一般是集合类型)拆分成一个一个的个体使用。

:::info

消费一个元素,可以产生0到多个元素。

:::flatMap可以认为是“扁平化”(flatten)和“映射”(map)两步操作的结合,也就是先按照某种规则对数据进行打散拆分,再对拆分后的元素做转换处理。

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
4月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之在Flink算子内部使用异步IO可以通过什么办法实现
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用合集之如何在open算子中有办法获取到jobmanager的ip
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStreamAPI、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 关系型数据库 MySQL
实时计算 Flink版产品使用问题之如何将算子链断开
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
负载均衡 算法 大数据
[flink 实时流基础] 转换算子
[flink 实时流基础] 转换算子
|
6月前
|
消息中间件 关系型数据库 MySQL
[flink 实时流基础] 输出算子(Sink)
[flink 实时流基础] 输出算子(Sink)
146 1
|
6月前
|
消息中间件 网络协议 Kafka
[flink 实时流基础] flink 源算子
[flink 实时流基础] flink 源算子
|
6月前
|
SQL 关系型数据库 MySQL
Flink输出问题之flink侧输出算子堵住如何解决
Apache Flink是由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎。本合集提供有关Apache Flink相关技术、使用技巧和最佳实践的资源。
|
6月前
|
流计算
Flink在open算子中有办法获取到jobmanager的ip吗?
Flink在open算子中有办法获取到jobmanager的ip吗?
78 0
|
消息中间件 缓存 资源调度
在 Flink 算子中使用多线程如何保证不丢数据?
本人通过分析痛点、同步批量请求优化为异步请求、多线程 Client 模式、Flink 算子内多线程实现以及总结四部分帮助大家理解 Flink 中使用多线程的优化及在 Flink 算子中使用多线程如何保证不丢数据。
在 Flink 算子中使用多线程如何保证不丢数据?
|
消息中间件 缓存 资源调度
在 Flink 算子中使用多线程如何保证不丢数据?
本人通过分析痛点、同步批量请求优化为异步请求、多线程 Client 模式、Flink 算子内多线程实现以及总结四部分帮助大家理解 Flink 中使用多线程的优化及在 Flink 算子中使用多线程如何保证不丢数据。