Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享-2

简介: Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享

Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享-1

https://developer.aliyun.com/article/1489321


步骤5:将数据分割为训练和测试集

训练数据集和测试数据集必须相似,通常具有相同的预测变量或变量。它们在变量的观察值和特定值上有所不同。如果将模型拟合到训练数据集上,则将隐式地最小化误差。拟合模型为训练数据集提供了良好的预测。然后,您可以在测试数据集上测试模型。如果模型在测试数据集上也预测良好,则您将更有信心。因为测试数据集与训练数据集相似,但模型既不相同也不相同。这意味着该模型在真实意义上转移了预测或学习。

因此,通过将数据集划分为训练和测试子集,我们可以有效地测量训练后的模型,因为它以前从未看到过测试数据,因此可以防止过度拟合。

我只是将数据集拆分为20%的测试数据,其余80%将用于训练模型。

train\_test\_split(X, y, test\_size = 0.2, random\_state = 0)

步骤6:规范化数据:特征标准化

对于许多机器学习算法而言,通过标准化(或Z分数标准化)进行特征标准化可能是重要的预处理步骤。

许多算法(例如SVM,K近邻算法和逻辑回归)都需要对特征进行规范化,

min\_test = X\_test.min()
range\_test = (X\_test - min_test).max()
X\_test\_scaled = (X\_test - min\_test)/range_test

步骤7:应用机器学习模型

from sklearn.ensemble  import AdaBoostClassifier
adaboost =AdaBoostClassifier()

image.png

xgb\_classifier.fit(X\_train\_scaled, y\_train,verbose=True)
end=time()
train\_time\_xgb=end-start

image.png

应用具有100棵树和标准熵的随机森林

classifier = RandomForestClassifier(random_state = 47, 
                                    criterion = 'entropy',n_estimators=100)

image.png

svc_model = SVC(kernel='rbf', gamma=0.1,C=100)

image.png

knn = KNeighborsClassifier(n_neighbors = 7)

image.png

步骤8:分析和比较机器学习模型的训练时间

Train_Time = \[
    train\_time\_ada,
    train\_time\_xgb,
    train\_time\_sgd,
    train\_time\_svc,
    train\_time\_g,
    train\_time\_r100,
    
    train\_time\_knn
\]

image.png

从上图可以明显看出,与其他模型相比,Adaboost和XGboost花费的时间少得多,而其他模型由于SVC花费了最多的时间,原因可能是我们已经将一些关键参数传递给了SVC。

步骤9.模型优化

在每个迭代次数上,随机搜索的性能均优于网格搜索。同样,随机搜索似乎比网格搜索更快地收敛到最佳状态,这意味着迭代次数更少的随机搜索与迭代次数更多的网格搜索相当。

在高维参数空间中,由于点变得更稀疏,因此在相同的迭代中,网格搜索的性能会下降。同样常见的是,超参数之一对于找到最佳超参数并不重要,在这种情况下,网格搜索浪费了很多迭代,而随机搜索却没有浪费任何迭代。

现在,我们将使用Randomsearch cv优化模型准确性。如上表所示,Adaboost在该数据集中表现最佳。因此,我们将尝试通过微调adaboost和SVC的超参数来进一步优化它们。

参数调整

现在,让我们看看adaboost的最佳参数是什么

random\_search.best\_params_
{'random\_state': 47, 'n\_estimators': 50, 'learning_rate': 0.01}

image.png

random\_search.best\_params_
{'n\_estimators': 50, 'min\_child\_weight': 4, 'max\_depth': 3}

image.png

random\_search.best\_params_
{'penalty': 'l2', 'n\_jobs': -1, 'n\_iter': 1000, 'loss': 'log', 'alpha': 0.0001}

image.png

出色的所有指标参数准确性,F1分数精度,ROC,三个模型adaboost,XGBoost和SGD的召回率现已优化。此外,我们还可以尝试使用其他参数组合来查看是否会有进一步的改进。

ROC曲线图

auc = metrics.roc\_auc\_score(y\_test,model.predict(X\_test_scaled))
plt.plot(\[0, 1\], \[0, 1\],'r--')

image.png

# 计算测试集分数的平均值和标准差
test_mean = np.mean
# 绘制训练集和测试集的平均准确度得分
plt.plot
# 绘制训练集和测试集的准确度。
plt.fill_between

image.png

验证曲线的解释

如果树的数量在10左右,则该模型存在高偏差。两个分数非常接近,但是两个分数都离可接受的水平太远,因此我认为这是一个高度偏见的问题。换句话说,该模型不适合。

在最大树数为250的情况下,由于训练得分为0.82但验证得分约为0.81,因此模型存在高方差。换句话说,模型过度拟合。同样,数据点显示出一种优美的曲线。但是,我们的模型使用非常复杂的曲线来尽可能接近每个数据点。因此,具有高方差的模型具有非常低的偏差,因为它几乎没有假设数据。实际上,它对数据的适应性太大。

从曲线中可以看出,大约30到40的最大树可以最好地概括看不见的数据。随着最大树的增加,偏差变小,方差变大。我们应该保持两者之间的平衡。在30到40棵树的数量之后,训练得分就开始上升,而验证得分开始下降,因此我开始遭受过度拟合的困扰。因此,这是为什么30至40之间的任何数量的树都是一个不错的选择的原因。

结论

因此,我们已经看到,调整后的Adaboost的准确性约为82.95%,并且在所有其他性能指标(例如F1分数,Precision,ROC和Recall)中也取得了不错的成绩。

此外,我们还可以通过使用Randomsearch或Gridsearch进行模型优化,以找到合适的参数以提高模型的准确性。

我认为,如果对这三个模型进行了适当的调整,它们的性能都会更好。

相关文章
|
12天前
|
图形学 Python
SciPy 空间数据2
凸包(Convex Hull)是计算几何中的概念,指包含给定点集的所有凸集的交集。可以通过 `ConvexHull()` 方法创建凸包。示例代码展示了如何使用 `scipy` 库和 `matplotlib` 绘制给定点集的凸包。
21 1
|
12天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
13天前
|
数据采集 Web App开发 iOS开发
如何使用 Python 语言的正则表达式进行网页数据的爬取?
使用 Python 进行网页数据爬取的步骤包括:1. 安装必要库(requests、re、bs4);2. 发送 HTTP 请求获取网页内容;3. 使用正则表达式提取数据;4. 数据清洗和处理;5. 循环遍历多个页面。通过这些步骤,可以高效地从网页中提取所需信息。
|
25天前
|
数据可视化 算法 JavaScript
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
本文探讨了如何利用图论分析时间序列数据的平稳性和连通性。通过将时间序列数据转换为图结构,计算片段间的相似性,并构建连通图,可以揭示数据中的隐藏模式。文章介绍了平稳性的概念,提出了基于图的平稳性度量,并展示了图分区在可视化平稳性中的应用。此外,还模拟了不同平稳性和非平稳性程度的信号,分析了图度量的变化,为时间序列数据分析提供了新视角。
53 0
基于图论的时间序列数据平稳性与连通性分析:利用图形、数学和 Python 揭示时间序列数据中的隐藏模式
|
12天前
|
索引 Python
SciPy 空间数据1
SciPy 通过 `scipy.spatial` 模块处理空间数据,如判断点是否在边界内、计算最近点等。三角测量是通过测量角度来确定目标距离的方法。多边形的三角测量可将其分解为多个三角形,用于计算面积。Delaunay 三角剖分是一种常用方法,可以对一系列点进行三角剖分。示例代码展示了如何使用 `Delaunay()` 函数创建三角形并绘制。
21 0
|
6天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
6天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
6天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!
|
8天前
|
设计模式 算法 搜索推荐
Python编程中的设计模式:优雅解决复杂问题的钥匙####
本文将探讨Python编程中几种核心设计模式的应用实例与优势,不涉及具体代码示例,而是聚焦于每种模式背后的设计理念、适用场景及其如何促进代码的可维护性和扩展性。通过理解这些设计模式,开发者可以更加高效地构建软件系统,实现代码复用,提升项目质量。 ####
|
7天前
|
机器学习/深度学习 存储 算法
探索Python编程:从基础到高级应用
【10月更文挑战第38天】本文旨在引导读者从Python的基础知识出发,逐渐深入到高级编程概念。通过简明的语言和实际代码示例,我们将一起探索这门语言的魅力和潜力,理解它如何帮助解决现实问题,并启发我们思考编程在现代社会中的作用和意义。