Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享-2

简介: Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享

Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享-1

https://developer.aliyun.com/article/1489321


步骤5:将数据分割为训练和测试集

训练数据集和测试数据集必须相似,通常具有相同的预测变量或变量。它们在变量的观察值和特定值上有所不同。如果将模型拟合到训练数据集上,则将隐式地最小化误差。拟合模型为训练数据集提供了良好的预测。然后,您可以在测试数据集上测试模型。如果模型在测试数据集上也预测良好,则您将更有信心。因为测试数据集与训练数据集相似,但模型既不相同也不相同。这意味着该模型在真实意义上转移了预测或学习。

因此,通过将数据集划分为训练和测试子集,我们可以有效地测量训练后的模型,因为它以前从未看到过测试数据,因此可以防止过度拟合。

我只是将数据集拆分为20%的测试数据,其余80%将用于训练模型。

train\_test\_split(X, y, test\_size = 0.2, random\_state = 0)

步骤6:规范化数据:特征标准化

对于许多机器学习算法而言,通过标准化(或Z分数标准化)进行特征标准化可能是重要的预处理步骤。

许多算法(例如SVM,K近邻算法和逻辑回归)都需要对特征进行规范化,

min\_test = X\_test.min()
range\_test = (X\_test - min_test).max()
X\_test\_scaled = (X\_test - min\_test)/range_test

步骤7:应用机器学习模型

from sklearn.ensemble  import AdaBoostClassifier
adaboost =AdaBoostClassifier()

image.png

xgb\_classifier.fit(X\_train\_scaled, y\_train,verbose=True)
end=time()
train\_time\_xgb=end-start

image.png

应用具有100棵树和标准熵的随机森林

classifier = RandomForestClassifier(random_state = 47, 
                                    criterion = 'entropy',n_estimators=100)

image.png

svc_model = SVC(kernel='rbf', gamma=0.1,C=100)

image.png

knn = KNeighborsClassifier(n_neighbors = 7)

image.png

步骤8:分析和比较机器学习模型的训练时间

Train_Time = \[
    train\_time\_ada,
    train\_time\_xgb,
    train\_time\_sgd,
    train\_time\_svc,
    train\_time\_g,
    train\_time\_r100,
    
    train\_time\_knn
\]

image.png

从上图可以明显看出,与其他模型相比,Adaboost和XGboost花费的时间少得多,而其他模型由于SVC花费了最多的时间,原因可能是我们已经将一些关键参数传递给了SVC。

步骤9.模型优化

在每个迭代次数上,随机搜索的性能均优于网格搜索。同样,随机搜索似乎比网格搜索更快地收敛到最佳状态,这意味着迭代次数更少的随机搜索与迭代次数更多的网格搜索相当。

在高维参数空间中,由于点变得更稀疏,因此在相同的迭代中,网格搜索的性能会下降。同样常见的是,超参数之一对于找到最佳超参数并不重要,在这种情况下,网格搜索浪费了很多迭代,而随机搜索却没有浪费任何迭代。

现在,我们将使用Randomsearch cv优化模型准确性。如上表所示,Adaboost在该数据集中表现最佳。因此,我们将尝试通过微调adaboost和SVC的超参数来进一步优化它们。

参数调整

现在,让我们看看adaboost的最佳参数是什么

random\_search.best\_params_
{'random\_state': 47, 'n\_estimators': 50, 'learning_rate': 0.01}

image.png

random\_search.best\_params_
{'n\_estimators': 50, 'min\_child\_weight': 4, 'max\_depth': 3}

image.png

random\_search.best\_params_
{'penalty': 'l2', 'n\_jobs': -1, 'n\_iter': 1000, 'loss': 'log', 'alpha': 0.0001}

image.png

出色的所有指标参数准确性,F1分数精度,ROC,三个模型adaboost,XGBoost和SGD的召回率现已优化。此外,我们还可以尝试使用其他参数组合来查看是否会有进一步的改进。

ROC曲线图

auc = metrics.roc\_auc\_score(y\_test,model.predict(X\_test_scaled))
plt.plot(\[0, 1\], \[0, 1\],'r--')

image.png

# 计算测试集分数的平均值和标准差
test_mean = np.mean
# 绘制训练集和测试集的平均准确度得分
plt.plot
# 绘制训练集和测试集的准确度。
plt.fill_between

image.png

验证曲线的解释

如果树的数量在10左右,则该模型存在高偏差。两个分数非常接近,但是两个分数都离可接受的水平太远,因此我认为这是一个高度偏见的问题。换句话说,该模型不适合。

在最大树数为250的情况下,由于训练得分为0.82但验证得分约为0.81,因此模型存在高方差。换句话说,模型过度拟合。同样,数据点显示出一种优美的曲线。但是,我们的模型使用非常复杂的曲线来尽可能接近每个数据点。因此,具有高方差的模型具有非常低的偏差,因为它几乎没有假设数据。实际上,它对数据的适应性太大。

从曲线中可以看出,大约30到40的最大树可以最好地概括看不见的数据。随着最大树的增加,偏差变小,方差变大。我们应该保持两者之间的平衡。在30到40棵树的数量之后,训练得分就开始上升,而验证得分开始下降,因此我开始遭受过度拟合的困扰。因此,这是为什么30至40之间的任何数量的树都是一个不错的选择的原因。

结论

因此,我们已经看到,调整后的Adaboost的准确性约为82.95%,并且在所有其他性能指标(例如F1分数,Precision,ROC和Recall)中也取得了不错的成绩。

此外,我们还可以通过使用Randomsearch或Gridsearch进行模型优化,以找到合适的参数以提高模型的准确性。

我认为,如果对这三个模型进行了适当的调整,它们的性能都会更好。

相关文章
|
3天前
|
机器学习/深度学习 JSON API
【Python奇迹】FastAPI框架大显神通:一键部署机器学习模型,让数据预测飞跃至Web舞台,震撼开启智能服务新纪元!
【8月更文挑战第16天】在数据驱动的时代,高效部署机器学习模型至关重要。FastAPI凭借其高性能与灵活性,成为搭建模型API的理想选择。本文详述了从环境准备、模型训练到使用FastAPI部署的全过程。首先,确保安装了Python及相关库(fastapi、uvicorn、scikit-learn)。接着,以线性回归为例,构建了一个预测房价的模型。通过定义FastAPI端点,实现了基于房屋大小预测价格的功能,并介绍了如何运行服务器及测试API。最终,用户可通过HTTP请求获取预测结果,极大地提升了模型的实用性和集成性。
13 1
|
4天前
|
数据采集 数据可视化 算法
GitHub星标68K!Python数据分析入门手册带你从数据获取到可视化
Python作为一门优秀的编程语言,近年来受到很多编程爱好者的青睐。一是因为Python本身具有简捷优美、易学易用的特点;二是由于互联网的飞速发展,我们正迎来大数据的时代,而Python 无论是在数据的采集与处理方面,还是在数据分析与可视化方面都有独特的优势。我们可以利用 Python 便捷地开展与数据相关的项目,以很低的学习成本快速完成项目的研究。
|
4天前
|
数据采集 Java PHP
使用Python+requests简单实现模拟登录以及抓取接口数据
本文通过Python的requests库演示了如何实现模拟登录和抓取接口数据的过程,包括设置请求头、发送POST请求进行登录以及使用登录后的会话进行GET请求获取数据。
15 1
|
1天前
|
消息中间件 SQL Java
实时数仓 Hologres产品使用合集之如何用python将kafka数据写入
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
3天前
|
JSON 缓存 安全
Python pickle 二进制序列化和反序列化 - 数据持久化
Python pickle 二进制序列化和反序列化 - 数据持久化
10 0
|
7天前
|
算法 程序员 开发工具
百万级Python讲师又一力作!Python编程轻松进阶,豆瓣评分8.1
在学习Python的旅程中你是否正在“绝望的沙漠”里徘徊? 学完基础教程的你,是否还在为选择什么学习资料犹豫不决,不知从何入手,提高自己?
百万级Python讲师又一力作!Python编程轻松进阶,豆瓣评分8.1
|
5天前
|
算法 程序员 开发工具
百万级Python讲师又一力作!Python编程轻松进阶,豆瓣评分8.1
在学习Python的旅程中你是否正在“绝望的沙漠”里徘徊? 学完基础教程的你,是否还在为选择什么学习资料犹豫不决,不知从何入手,提高自己?
|
2天前
|
数据采集 存储 人工智能
掌握Python编程:从基础到进阶的实用指南
【8月更文挑战第17天】 本文旨在通过浅显易懂的语言和实际案例,为初学者和有一定基础的开发者提供一条清晰的Python学习路径。我们将从Python的基本语法入手,逐步深入到面向对象编程、数据科学应用及网络爬虫开发等高级主题。每个部分都配备了代码示例和实操建议,确保读者能够将理论知识转化为实际能力。无论你是编程新手,还是希望提升Python技能的开发者,这篇文章都将为你打开一扇通往高效编程世界的大门。
7 2
|
7天前
|
Python
python Process 多进程编程
python Process 多进程编程
17 1
|
11天前
|
存储 数据挖掘 程序员
揭秘Python:掌握这些基本语法和数据类型,你将拥有编程世界的钥匙!
【8月更文挑战第8天】Python是一种高级、解释型语言,以简洁的语法和强大的功能广受好评。本文从基本语法入手,强调Python独特的缩进规则,展示清晰的代码结构。接着介绍了Python的主要数据类型,包括数值、字符串、列表、元组、集合和字典,并提供了示例代码。通过这些基础知识的学习,你将为深入探索Python及其在文本处理、数据分析等领域的应用打下坚实的基础。
26 3