Python信贷风控模型:Adaboost,XGBoost,SGD, SVC,随机森林, KNN预测信贷违约支付|数据分享-1
https://developer.aliyun.com/article/1489321
步骤5:将数据分割为训练和测试集
训练数据集和测试数据集必须相似,通常具有相同的预测变量或变量。它们在变量的观察值和特定值上有所不同。如果将模型拟合到训练数据集上,则将隐式地最小化误差。拟合模型为训练数据集提供了良好的预测。然后,您可以在测试数据集上测试模型。如果模型在测试数据集上也预测良好,则您将更有信心。因为测试数据集与训练数据集相似,但模型既不相同也不相同。这意味着该模型在真实意义上转移了预测或学习。
因此,通过将数据集划分为训练和测试子集,我们可以有效地测量训练后的模型,因为它以前从未看到过测试数据,因此可以防止过度拟合。
我只是将数据集拆分为20%的测试数据,其余80%将用于训练模型。
train\_test\_split(X, y, test\_size = 0.2, random\_state = 0)
步骤6:规范化数据:特征标准化
对于许多机器学习算法而言,通过标准化(或Z分数标准化)进行特征标准化可能是重要的预处理步骤。
许多算法(例如SVM,K近邻算法和逻辑回归)都需要对特征进行规范化,
min\_test = X\_test.min() range\_test = (X\_test - min_test).max() X\_test\_scaled = (X\_test - min\_test)/range_test
步骤7:应用机器学习模型
from sklearn.ensemble import AdaBoostClassifier adaboost =AdaBoostClassifier()
xgb\_classifier.fit(X\_train\_scaled, y\_train,verbose=True) end=time() train\_time\_xgb=end-start
应用具有100棵树和标准熵的随机森林
classifier = RandomForestClassifier(random_state = 47, criterion = 'entropy',n_estimators=100)
svc_model = SVC(kernel='rbf', gamma=0.1,C=100)
knn = KNeighborsClassifier(n_neighbors = 7)
步骤8:分析和比较机器学习模型的训练时间
Train_Time = \[ train\_time\_ada, train\_time\_xgb, train\_time\_sgd, train\_time\_svc, train\_time\_g, train\_time\_r100, train\_time\_knn \]
从上图可以明显看出,与其他模型相比,Adaboost和XGboost花费的时间少得多,而其他模型由于SVC花费了最多的时间,原因可能是我们已经将一些关键参数传递给了SVC。
步骤9.模型优化
在每个迭代次数上,随机搜索的性能均优于网格搜索。同样,随机搜索似乎比网格搜索更快地收敛到最佳状态,这意味着迭代次数更少的随机搜索与迭代次数更多的网格搜索相当。
在高维参数空间中,由于点变得更稀疏,因此在相同的迭代中,网格搜索的性能会下降。同样常见的是,超参数之一对于找到最佳超参数并不重要,在这种情况下,网格搜索浪费了很多迭代,而随机搜索却没有浪费任何迭代。
现在,我们将使用Randomsearch cv优化模型准确性。如上表所示,Adaboost在该数据集中表现最佳。因此,我们将尝试通过微调adaboost和SVC的超参数来进一步优化它们。
参数调整
现在,让我们看看adaboost的最佳参数是什么
random\_search.best\_params_
{'random\_state': 47, 'n\_estimators': 50, 'learning_rate': 0.01}
random\_search.best\_params_
{'n\_estimators': 50, 'min\_child\_weight': 4, 'max\_depth': 3}
random\_search.best\_params_
{'penalty': 'l2', 'n\_jobs': -1, 'n\_iter': 1000, 'loss': 'log', 'alpha': 0.0001}
出色的所有指标参数准确性,F1分数精度,ROC,三个模型adaboost,XGBoost和SGD的召回率现已优化。此外,我们还可以尝试使用其他参数组合来查看是否会有进一步的改进。
ROC曲线图
auc = metrics.roc\_auc\_score(y\_test,model.predict(X\_test_scaled)) plt.plot(\[0, 1\], \[0, 1\],'r--')
# 计算测试集分数的平均值和标准差 test_mean = np.mean # 绘制训练集和测试集的平均准确度得分 plt.plot # 绘制训练集和测试集的准确度。 plt.fill_between
验证曲线的解释
如果树的数量在10左右,则该模型存在高偏差。两个分数非常接近,但是两个分数都离可接受的水平太远,因此我认为这是一个高度偏见的问题。换句话说,该模型不适合。
在最大树数为250的情况下,由于训练得分为0.82但验证得分约为0.81,因此模型存在高方差。换句话说,模型过度拟合。同样,数据点显示出一种优美的曲线。但是,我们的模型使用非常复杂的曲线来尽可能接近每个数据点。因此,具有高方差的模型具有非常低的偏差,因为它几乎没有假设数据。实际上,它对数据的适应性太大。
从曲线中可以看出,大约30到40的最大树可以最好地概括看不见的数据。随着最大树的增加,偏差变小,方差变大。我们应该保持两者之间的平衡。在30到40棵树的数量之后,训练得分就开始上升,而验证得分开始下降,因此我开始遭受过度拟合的困扰。因此,这是为什么30至40之间的任何数量的树都是一个不错的选择的原因。
结论
因此,我们已经看到,调整后的Adaboost的准确性约为82.95%,并且在所有其他性能指标(例如F1分数,Precision,ROC和Recall)中也取得了不错的成绩。
此外,我们还可以通过使用Randomsearch或Gridsearch进行模型优化,以找到合适的参数以提高模型的准确性。
我认为,如果对这三个模型进行了适当的调整,它们的性能都会更好。