一阶优化算法启发,北大林宙辰团队提出具有万有逼近性质的神经网络架构的设计方法

简介: 【4月更文挑战第19天】北京大学林宙辰团队在深度学习领域取得突破,提出基于一阶优化算法的神经网络设计方法,构建具有万有逼近性质的模型,提升训练速度和泛化能力。该方法利用一阶导数信息,高效处理大规模问题。虽然面临非光滑优化和收敛速度挑战,但团队通过正则化和自适应学习率等策略进行改进,相关研究在多个标准数据集上表现出色。

在人工智能领域,深度学习技术的发展日新月异,其中神经网络的设计和优化是推动这一领域进步的关键因素。近年来,北京大学的林宙辰团队在这一领域取得了突破性进展,他们提出了一种基于一阶优化算法的神经网络架构设计方法,旨在构建具有万有逼近性质的深度学习模型。这一研究成果不仅为神经网络的设计提供了新的视角,也为解决实际问题提供了强有力的工具。

首先,我们需要了解什么是万有逼近性质。简单来说,万有逼近性质指的是一个系统或模型能够逼近任何连续函数的性质。在神经网络领域,这意味着一个理想的网络结构应该能够近似解决任何问题,只要给予足够的时间和资源。林宙辰团队提出的设计方法正是基于这样的理念,通过一阶优化算法来寻找能够实现万有逼近的神经网络架构。

一阶优化算法是求解最优化问题的一种方法,它主要依赖于目标函数的一阶导数信息,即梯度信息。与传统的二阶优化方法相比,一阶优化算法在计算上更为高效,因为它不需要存储和计算目标函数的二阶导数,即Hessian矩阵。这使得一阶优化算法在处理大规模问题时具有明显的优势。

林宙辰团队的研究成果首先肯定了一阶优化算法在神经网络设计中的潜力。他们通过理论分析和实验验证,展示了基于一阶优化算法设计的神经网络在多个标准数据集上的优秀表现。这些网络不仅在训练速度上有所提升,而且在模型的泛化能力上也有所增强。这一发现对于提高深度学习模型的效率和效果具有重要意义。

然而,任何技术的发展都不是一帆风顺的。尽管一阶优化算法在神经网络设计中展现出了巨大潜力,但也存在一些挑战和局限性。例如,一阶优化算法可能在面对非光滑或非凸优化问题时遇到困难,这些问题在实际应用中并不罕见。此外,算法的收敛速度和稳定性也是需要进一步研究和改进的问题。

林宙辰团队在论文中也对这些问题进行了深入探讨,并提出了相应的解决方案。他们通过引入正则化技术来提高算法的鲁棒性,同时采用自适应学习率等策略来加快收敛速度。这些改进使得基于一阶优化算法的神经网络设计方法更加完善和实用。

论文地址:https://ieeexplore.ieee.org/document/10477580

目录
相关文章
|
11天前
|
机器学习/深度学习 编解码 人工智能
超越Transformer,全面升级!MIT等华人团队发布通用时序TimeMixer++架构,8项任务全面领先
一支由麻省理工学院、香港科技大学(广州)、浙江大学和格里菲斯大学的华人研究团队,开发了名为TimeMixer++的时间序列分析模型。该模型在8项任务中超越现有技术,通过多尺度时间图像转换、双轴注意力机制和多尺度多分辨率混合等技术,实现了性能的显著提升。论文已发布于arXiv。
130 83
|
12天前
|
机器学习/深度学习 数据采集 人工智能
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
层次化Softmax算法通过引入Huffman树结构,将传统Softmax的计算复杂度从线性降至对数级别,显著提升了大规模词汇表的训练效率。该算法不仅优化了计算效率,还在处理大规模离散分布问题上提供了新的思路。文章详细介绍了Huffman树的构建、节点编码、概率计算及基于Gensim的实现方法,并讨论了工程实现中的优化策略与应用实践。
60 15
基于Huffman树的层次化Softmax:面向大规模神经网络的高效概率计算方法
|
6天前
|
机器学习/深度学习 算法 PyTorch
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
本文探讨了图神经网络(GNN)与大型语言模型(LLM)结合在知识图谱问答中的应用。研究首先基于G-Retriever构建了探索性模型,然后深入分析了GNN-RAG架构,通过敏感性研究和架构改进,显著提升了模型的推理能力和答案质量。实验结果表明,改进后的模型在多个评估指标上取得了显著提升,特别是在精确率和召回率方面。最后,文章提出了反思机制和教师网络的概念,进一步增强了模型的推理能力。
24 4
基于图神经网络的大语言模型检索增强生成框架研究:面向知识图谱推理的优化与扩展
|
4天前
|
域名解析 缓存 网络协议
优化Lua-cURL:减少网络请求延迟的实用方法
优化Lua-cURL:减少网络请求延迟的实用方法
|
3天前
|
数据采集 监控 安全
公司网络监控软件:Zig 语言底层优化保障系统高性能运行
在数字化时代,Zig 语言凭借出色的底层控制能力和高性能特性,为公司网络监控软件的优化提供了有力支持。从数据采集、连接管理到数据分析,Zig 语言确保系统高效稳定运行,精准处理海量网络数据,保障企业信息安全与业务连续性。
18 4
|
4天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
26 3
|
4天前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
21 2
|
19天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
16天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
20天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
下一篇
DataWorks