Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据

简介: Python中利用长短期记忆模型LSTM进行时间序列预测分析 - 预测电力负荷数据

此示例中,神经网络用于使用2011年4月至2013年2月期间的数据预测公民办公室的电力消耗。

每日数据是通过总计每天提供的15分钟间隔的消耗量来创建的。

LSTM简介

LSTM(或长短期记忆人工神经网络)允许分析具有长期依赖性的有序数据。当涉及到这项任务时,传统的神经网络体现出不足,在这方面,LSTM将用于预测这种情况下的电力消耗模式。

与ARIMA等模型相比,LSTM的一个特殊优势是数据不一定需要是稳定的(常数均值,方差和自相关),以便LSTM对其进行分析。

自相关图,Dickey-Fuller测试和对数变换

为了确定我们的模型中是否存在平稳性

  • 生成自相关和自相关图
  • 进行Dickey-Fuller测试
  • 对时间序列进行对数变换,并再次运行上述两个过程,以确定平稳性的变化(如果有的话)

首先,这是时间序列图:

据观察,波动性(或消费从一天到下一天的变化)非常高。在这方面,对数变换可以用于尝试稍微平滑该数据。在此之前,生成ACF和PACF图,并进行Dickey-Fuller测试。

自相关图

偏自相关图

自相关和自相关图都表现出显着的波动性,这意味着时间序列中的几个区间存在相关性。

运行Dickey-Fuller测试时,会产生以下结果:

当p值高于0.05时,不能拒绝非平稳性的零假设。

 

STD1
954.7248
4043.4302
0.23611754

变异系数(或平均值除以标准差)为0.236,表明该系列具有显着的波动性。

现在,数据被转换为对数格式。

虽然时间序列仍然不稳定,但当以对数格式表示时,偏差的大小略有下降:

此外,变异系数已显着下降至0.0319,这意味着与平均值相关的趋势的可变性显着低于先前。

STD2 = np.std(数据集)
mean2 = np.mean(数据集)
cv2 = std2 / mean2 #变异系数
std2
0.26462445
mean2
8.272395
cv2
0.031988855

同样,在对数数据上生成ACF和PACF图,并再次进行Dickey-Fuller测试。

自相关图

偏自相关图

Dickey-Fuller测试

... print('\ t%s:%。3f'%(key,value))
1%:-3.440
5%: -  2.866
10%: -  2.569

Dickey-Fuller检验的p值降至0.0576。虽然这在技术上没有拒绝零假设所需的5%显着性阈值,但对数时间序列已显示基于CV度量的较低波动率,因此该时间序列用于LSTM的预测目的。

LSTM的时间序列分析

现在,LSTM模型用于预测目的。

数据处理

首先,导入相关库并执行数据处理

LSTM生成和预测

模型训练超过100期,并生成预测。

#生成LSTM网络
model = Sequential()
model.add(LSTM(4,input_shape =(1,previous)))
 model.fit(X\_train,Y\_train,epochs = 100,batch_size = 1,verbose = 2)
#生成预测
trainpred = model.predict(X_train)
#将标准化后的数据转换为原始数据
trainpred = scaler.inverse_transform(trainpred)
#计算 RMSE
trainScore = math.sqrt(mean\_squared\_error(Y_train \[0\],trainpred \[:,0\]))
 
#训练预测
trainpredPlot = np.empty_like(dataset)
 
#测试预测
#绘制所有预测
inversetransform,= plt.plot(scaler.inverse_transform(dataset))

准确性

该模型显示训练数据集的均方根误差为0.24,测试数据集的均方根误差为0.23。平均千瓦消耗量(以对数格式表示)为8.27,这意味着0.23的误差小于平均消耗量的3%。

以下是预测消费与实际消费量的关系图:

有趣的是,当在原始数据上生成预测(未转换为对数格式)时,会产生以下训练和测试误差:

在每天平均消耗4043千瓦的情况下,测试的均方误差占总日均消耗量的近20%,并且与对数数据产生的误差相比非常高。

让我们来看看这增加预测到1050天。

10天

50天

我们可以看到测试误差在10天和50天期间显着降低,并且考虑到LSTM模型在预测时考虑了更多的历史数据,消耗的波动性得到了更好的预测。

鉴于数据是对数格式,现在可以通过获得数据的指数来获得预测的真实值。

例如,testpred变量用(1,-1)重新调整:

testpred.reshape(1,-1)
 array(\[\[7.7722197,8.277015,8.458941,8.455311,8.447589,8.445035,
 ......
8.425287,8.404881,8.457063,8.423954,7.98714,7.9003944,
8.240862,8.41654,8.423854,8.437414,8.397851,7.9047146\]\],
dtype = float32)

结论

对于这个例子,LSTM被证明在预测电力消耗波动方面非常准确。此外,以对数格式表示时间序列可以提高LSTM的预测准确度。

相关文章
|
1月前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
68 4
|
3月前
|
机器学习/深度学习 算法 数据挖掘
基于WOA优化的CNN-LSTM的时间序列回归预测matlab仿真
本项目采用MATLAB 2022a实现时间序列预测,利用CNN与LSTM结合的优势,并以鲸鱼优化算法(WOA)优化模型超参数。CNN提取时间序列的局部特征,LSTM处理长期依赖关系,而WOA确保参数最优配置以提高预测准确性。完整代码附带中文注释及操作指南,运行效果无水印展示。
|
3月前
|
机器学习/深度学习 存储 自然语言处理
|
3月前
|
机器学习/深度学习 数据采集 数据挖掘
【第十届“泰迪杯”数据挖掘挑战赛】B题:电力系统负荷预测分析 ARIMA、AutoARIMA、LSTM、Prophet、多元Prophet 实现
详细介绍了在第十届“泰迪杯”数据挖掘挑战赛B题中对电力系统负荷进行预测分析的方法,包括数据预处理、特征工程、平稳性检验、数据转换以及使用ARIMA、AutoARIMA、LSTM、Prophet和多元Prophet模型进行建模和预测,并提供了完整代码的下载链接。
98 0
|
5月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
108 6
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
【从零开始学习深度学习】36. 门控循环神经网络之长短期记忆网络(LSTM)介绍、Pytorch实现LSTM并进行训练预测
|
5月前
|
机器学习/深度学习 算法 数据可视化
基于GA遗传优化的CNN-LSTM的时间序列回归预测matlab仿真
摘要:该内容展示了基于遗传算法优化的CNN-LSTM时间序列预测模型在matlab2022a中的应用。核心程序包括遗传算法优化过程、网络训练、误差分析及预测结果的可视化。模型通过GA调整CNN-LSTM的超参数,提升预测准确性和稳定性。算法流程涉及初始化、评估、选择、交叉和变异等步骤,旨在找到最佳超参数以优化模型性能。
|
4月前
|
机器学习/深度学习 算法
基于PSO粒子群优化的CNN-LSTM的时间序列回归预测matlab仿真
**算法预览图省略** - **软件版本**: MATLAB 2022a - **核心代码片段**略 - **PSO-CNN-LSTM概览**: 结合深度学习与优化,解决复杂时间序列预测。 - **CNN**利用卷积捕获时间序列的空间特征。 - **LSTM**通过门控机制处理长序列依赖,避免梯度问题。 - **流程**: 1. 初始化粒子群,每个粒子对应CNN-LSTM参数。 2. 训练模型,以验证集MSE评估适应度。 3. 使用PSO更新粒子参数,寻找最佳配置。 4. 迭代优化直到满足停止条件,如最大迭代次数或找到优良解。
|
6月前
|
Python 数据可视化 索引
PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化
PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化
PYTHON用GARCH、离散随机波动率模型DSV模拟估计股票收益时间序列与蒙特卡洛可视化
|
6月前
|
数据可视化 数据挖掘 Python
Python用 tslearn 进行时间序列聚类可视化
Python用 tslearn 进行时间序列聚类可视化

热门文章

最新文章