分布式自增ID算法---雪花算法(SnowFlake)Java实现

简介: 分布式自增ID算法---雪花算法(SnowFlake)Java实现

分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种。

算法原理

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。


41bit-时间戳,用来记录时间戳,毫秒级。


- 41位可以表示个数字,


- 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 ,减1是因为可表示的数值范围是从0开始算的,而不是1。


- 也就是说41位可以表示个毫秒的值,转化成单位年则是年



3:10bit-工作机器id,用来记录工作机器id。


- 可以部署在个节点,包括5位datacenterId和5位workerId


- 5位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId



4:12bit-序列号,序列号,用来记录同毫秒内产生的不同id。


- 12位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。



由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的SnowFlake可以保证:

  1. 所有生成的id按时间趋势递增
  2. 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

Twitter官方给出的算法实现 是用Scala写的,这里不做分析,可自行查看。

Java版算法实现

public class IdWorker{
 
    //下面两个每个5位,加起来就是10位的工作机器id
    private long workerId;    //工作id
    private long datacenterId;   //数据id
    //12位的序列号
    private long sequence;
 
    public IdWorker(long workerId, long datacenterId, long sequence){
        // sanity check for workerId
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
        }
        System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
 
        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }
 
    //初始时间戳
    private long twepoch = 1288834974657L;
 
    //长度为5位
    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;
    //最大值
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    //序列号id长度
    private long sequenceBits = 12L;
    //序列号最大值
    private long sequenceMask = -1L ^ (-1L << sequenceBits);
    
    //工作id需要左移的位数,12位
    private long workerIdShift = sequenceBits;
   //数据id需要左移位数 12+5=17位
    private long datacenterIdShift = sequenceBits + workerIdBits;
    //时间戳需要左移位数 12+5+5=22位
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    
    //上次时间戳,初始值为负数
    private long lastTimestamp = -1L;
 
    public long getWorkerId(){
        return workerId;
    }
 
    public long getDatacenterId(){
        return datacenterId;
    }
 
    public long getTimestamp(){
        return System.currentTimeMillis();
    }
 
     //下一个ID生成算法
    public synchronized long nextId() {
        long timestamp = timeGen();
 
        //获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }
 
        //获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }
        
        //将上次时间戳值刷新
        lastTimestamp = timestamp;
 
        /**
          * 返回结果:
          * (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
          * (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
          * (workerId << workerIdShift) 表示将工作id左移相应位数
          * | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
          * 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
        */
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }
 
    //获取时间戳,并与上次时间戳比较
    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
 
    //获取系统时间戳
    private long timeGen(){
        return System.currentTimeMillis();
    }
 
    //---------------测试---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1,1,1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }
 
}


相关文章
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
1143 161
|
10月前
|
人工智能 安全 Java
智慧工地源码,Java语言开发,微服务架构,支持分布式和集群部署,多端覆盖
智慧工地是“互联网+建筑工地”的创新模式,基于物联网、移动互联网、BIM、大数据、人工智能等技术,实现对施工现场人员、设备、材料、安全等环节的智能化管理。其解决方案涵盖数据大屏、移动APP和PC管理端,采用高性能Java微服务架构,支持分布式与集群部署,结合Redis、消息队列等技术确保系统稳定高效。通过大数据驱动决策、物联网实时监测预警及AI智能视频监控,消除数据孤岛,提升项目可控性与安全性。智慧工地提供专家级远程管理服务,助力施工质量和安全管理升级,同时依托可扩展平台、多端应用和丰富设备接口,满足多样化需求,推动建筑行业数字化转型。
369 5
|
Java 数据库
在Java中使用Seata框架实现分布式事务的详细步骤
通过以上步骤,利用 Seata 框架可以实现较为简单的分布式事务处理。在实际应用中,还需要根据具体业务需求进行更详细的配置和处理。同时,要注意处理各种异常情况,以确保分布式事务的正确执行。
|
存储 人工智能 算法
解锁分布式文件分享的 Java 一致性哈希算法密码
在数字化时代,文件分享成为信息传播与协同办公的关键环节。本文深入探讨基于Java的一致性哈希算法,该算法通过引入虚拟节点和环形哈希空间,解决了传统哈希算法在分布式存储中的“哈希雪崩”问题,确保文件分配稳定高效。文章还展示了Java实现代码,并展望了其在未来文件分享技术中的应用前景,如结合AI优化节点布局和区块链增强数据安全。
|
存储 缓存 Java
Java中的分布式缓存与Memcached集成实战
通过在Java项目中集成Memcached,可以显著提升系统的性能和响应速度。合理的缓存策略、分布式架构设计和异常处理机制是实现高效缓存的关键。希望本文提供的实战示例和优化建议能够帮助开发者更好地应用Memcached,实现高性能的分布式缓存解决方案。
259 9
|
11月前
|
开发框架
osharp集成Yitter.IdGenerator并实现分布式ID
本文介绍了在 osharp 框架中集成 Yitter.IdGenerator 实现分布式 ID 的方法。osharp 是一个基于 .NET Core 的快速开发框架,而 Yitter.IdGenerator 是一种高效的分布式 ID 生成器。通过实现 `IKeyGenerator&lt;long&gt;` 接口并创建 `YitterSnowKeyGenerator` 类,结合 `YitterIdGeneratorPack` 模块化配置,实现了分布式环境下唯一 ID 的生成。
229 0
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
450 7
|
算法 关系型数据库 MySQL
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
在分布式系统中,确保每个节点生成的 ID 唯一且高效至关重要。Snowflake 算法由 Twitter 开发,通过 64 位 long 型数字生成全局唯一 ID,包括 1 位标识位、41 位时间戳、10 位机器 ID 和 12 位序列号。该算法具备全局唯一性、递增性、高可用性和高性能,适用于高并发场景,如电商促销时的大量订单生成。本文介绍了使用 Go 语言的 `bwmarrin/snowflake` 和 `sony/sonyflake` 库实现 Snowflake 算法的方法。
861 1
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
532 8
|
存储 NoSQL Java
Java调度任务如何使用分布式锁保证相同任务在一个周期里只执行一次?
【10月更文挑战第29天】Java调度任务如何使用分布式锁保证相同任务在一个周期里只执行一次?
496 1