分布式自增ID算法---雪花算法(SnowFlake)Java实现

简介: 分布式自增ID算法---雪花算法(SnowFlake)Java实现

分布式id生成算法的有很多种,Twitter的SnowFlake就是其中经典的一种。

算法原理

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。


41bit-时间戳,用来记录时间戳,毫秒级。


- 41位可以表示个数字,


- 如果只用来表示正整数(计算机中正数包含0),可以表示的数值范围是:0 至 ,减1是因为可表示的数值范围是从0开始算的,而不是1。


- 也就是说41位可以表示个毫秒的值,转化成单位年则是年



3:10bit-工作机器id,用来记录工作机器id。


- 可以部署在个节点,包括5位datacenterId和5位workerId


- 5位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....31这32个数字,来表示不同的datecenterId或workerId



4:12bit-序列号,序列号,用来记录同毫秒内产生的不同id。


- 12位(bit)可以表示的最大正整数是,即可以用0、1、2、3、....4094这4095个数字,来表示同一机器同一时间截(毫秒)内产生的4095个ID序号。



由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的SnowFlake可以保证:

  1. 所有生成的id按时间趋势递增
  2. 整个分布式系统内不会产生重复id(因为有datacenterId和workerId来做区分)

Twitter官方给出的算法实现 是用Scala写的,这里不做分析,可自行查看。

Java版算法实现

public class IdWorker{
 
    //下面两个每个5位,加起来就是10位的工作机器id
    private long workerId;    //工作id
    private long datacenterId;   //数据id
    //12位的序列号
    private long sequence;
 
    public IdWorker(long workerId, long datacenterId, long sequence){
        // sanity check for workerId
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));
        }
        System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",
                timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
 
        this.workerId = workerId;
        this.datacenterId = datacenterId;
        this.sequence = sequence;
    }
 
    //初始时间戳
    private long twepoch = 1288834974657L;
 
    //长度为5位
    private long workerIdBits = 5L;
    private long datacenterIdBits = 5L;
    //最大值
    private long maxWorkerId = -1L ^ (-1L << workerIdBits);
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    //序列号id长度
    private long sequenceBits = 12L;
    //序列号最大值
    private long sequenceMask = -1L ^ (-1L << sequenceBits);
    
    //工作id需要左移的位数,12位
    private long workerIdShift = sequenceBits;
   //数据id需要左移位数 12+5=17位
    private long datacenterIdShift = sequenceBits + workerIdBits;
    //时间戳需要左移位数 12+5+5=22位
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    
    //上次时间戳,初始值为负数
    private long lastTimestamp = -1L;
 
    public long getWorkerId(){
        return workerId;
    }
 
    public long getDatacenterId(){
        return datacenterId;
    }
 
    public long getTimestamp(){
        return System.currentTimeMillis();
    }
 
     //下一个ID生成算法
    public synchronized long nextId() {
        long timestamp = timeGen();
 
        //获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常
        if (timestamp < lastTimestamp) {
            System.err.printf("clock is moving backwards.  Rejecting requests until %d.", lastTimestamp);
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds",
                    lastTimestamp - timestamp));
        }
 
        //获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。
        if (lastTimestamp == timestamp) {
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0;
        }
        
        //将上次时间戳值刷新
        lastTimestamp = timestamp;
 
        /**
          * 返回结果:
          * (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数
          * (datacenterId << datacenterIdShift) 表示将数据id左移相应位数
          * (workerId << workerIdShift) 表示将工作id左移相应位数
          * | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。
          * 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id
        */
        return ((timestamp - twepoch) << timestampLeftShift) |
                (datacenterId << datacenterIdShift) |
                (workerId << workerIdShift) |
                sequence;
    }
 
    //获取时间戳,并与上次时间戳比较
    private long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
 
    //获取系统时间戳
    private long timeGen(){
        return System.currentTimeMillis();
    }
 
    //---------------测试---------------
    public static void main(String[] args) {
        IdWorker worker = new IdWorker(1,1,1);
        for (int i = 0; i < 30; i++) {
            System.out.println(worker.nextId());
        }
    }
 
}


相关文章
|
1月前
|
算法 关系型数据库 MySQL
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
在分布式系统中,确保每个节点生成的 ID 唯一且高效至关重要。Snowflake 算法由 Twitter 开发,通过 64 位 long 型数字生成全局唯一 ID,包括 1 位标识位、41 位时间戳、10 位机器 ID 和 12 位序列号。该算法具备全局唯一性、递增性、高可用性和高性能,适用于高并发场景,如电商促销时的大量订单生成。本文介绍了使用 Go 语言的 `bwmarrin/snowflake` 和 `sony/sonyflake` 库实现 Snowflake 算法的方法。
56 1
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
|
22天前
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
35 1
|
1月前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
2月前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
2月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
4月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
135 2
基于Redis的高可用分布式锁——RedLock
|
26天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
84 5
|
30天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
63 8
|
1月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
59 16
|
1月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
44 5