基于四叉树的图像分割算法matlab仿真

简介: 基于四叉树的图像分割算法matlab仿真

1.算法运行效果图预览

4ff75ee4f4a9612d13b0b37ca5e34b75_82780907_202403022028110811492677_Expires=1709383091&Signature=fFL98dmrRgWiiD0pDBc8%2FNaEq%2Bo%3D&domain=8.jpeg
78f1c019d8624c6e006f3323085f3dbe_82780907_202403022028110858955965_Expires=1709383091&Signature=xF1f05UGLMqFMgmwS6C25rcVaak%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
图像分割是计算机视觉和图像处理中的一项关键技术,旨在将图像划分为多个具有相似性质的区域。基于四叉树的图像分割算法是一种有效的分割方法,它通过递归地将图像划分为四个子区域(即四叉树结构)来实现图像的层次化分割。四叉树(Quadtree)是一种数据结构,主要用于对二维空间进行分区和索引,特别适用于图像处理领域。在图像分割中,四叉树常用于划分图像区域,根据图像像素值或者颜色信息递归地将图像空间分割成四个子区域直至满足某种终止条件。

c00d89b8e4d9546e3703161facdb10d8_82780907_202403022027230345656272_Expires=1709383043&Signature=ik6i62C6FjMScRnnLEqbQpfLe%2Bk%3D&domain=8.png

图像分割应用:

   通过构建四叉树,可以有效地对图像进行层次化的分割。图像分割后,每个叶节点通常代表了一块具有相似特征的图像区域。在图像分析、目标检测、图像压缩等领域,这样的结构有助于快速访问和处理相关区域。

   然而,在实际生成数学公式的图片表示时,受限于当前环境,请允许我使用文字来描述数学表达式,而不能直接显示图片形式的公式。若需要具体数学公式图像,你可以在专业的数学排版软件或在线工具中创建,或者我可以为你简单模拟数学公式的文本表述。

    基于四叉树的图像分割算法是一种有效且灵活的图像分割方法。通过递归地划分图像区域,并结合适当的停止准则和后处理步骤,可以实现高质量的图像分割结果。这种算法在计算机视觉、遥感图像处理、医学图像处理等领域具有广泛的应用前景。
AI 代码解读

4.部分核心程序

```Imgs(dx + 1 : dx + R1, dy + 1 : dy + C1, : ) = I01;
map_f2 = zeros(dim2, dim2, N);
map_f2(dx + 1 : dx + R1, dy + 1 : dy + C1, : ) = map_f;

%分解层级和允许的最大块大小必须受到限制
dim3 = dim2 / 2;

%当未设置层级时,设置默认层级
if level == 0
level = log2(dim2);
end

% 设置默认允许的最大块大小
if Blks == 0
Blks = dim2;
end

%四叉树分解过程
pmin = 2;
Num = N;
[S, fus_idx, fus_max] = func_fusion(Imgs, map_f2, Num, level);

Fusion_dec = fus_idx(dx + 1 : dx + R1, dy + 1 : dy + C1);
fus_max = fus_max(dx + 1 : dx + R1, dy + 1 : dy + C1);

%第一个滤波器:开启和关闭形态学滤波
Iter = 1;
Fusion_dec = func_morph(Fusion_dec, N, Iter);

% 第二个滤波器:过滤内部的小块
Sz_blk = R1 * C1 / 40;
Fusion_dec = func_Blk_Filter(Fusion_dec, N, Sz_blk);
FImg = zeros(R1,C1);

%定义部分,直接根据决策图进行复制
for ii = 1 : Num
FImg = FImg + I01(:,:,ii) .* (Fusion_dec == ii);
end

%通过最大选择方法进行复制
Imax1 = zeros(R1, C1, N);
Imax2 = zeros(R1, C1);
%查找每个FM中的最大FM
for ii = 1 : N
tag = (map_f(:,:,ii) == fus_max);
Imax1(:,:,ii) = tag;
Imax2 = Imax2 + tag .* ii;
end

%非部分图像和最大选择
Pno = (Fusion_dec < 1);
Ino = I01;
Pno2 = zeros(R1,C1);
for ii = 1 : N
Ino(:,:,ii) = Ino(:,:,ii) . Pno;
Pno2 = Pno2 + Ino(:,:,ii) .
Imax1(:,:,ii);
end

%有超过一个FM(i)具有maxFM的位置
Nmax = sum(Imax1, 3);
%单个和多个位置
Nsgl = (Nmax == 1);
Nmulti = 1 - Nsgl;
% 如果存在多于一个的FMi等于maxFM
part2 = sum(Ino, 3) ./ N;

%对于整个非部分
nonPart = Pno2 . Nsgl + part2 . Nmulti;

%最终的融合图像FImg
FImg = FImg + nonPart;
FImg = uint8(FImg);

figure
subplot(121);
imshow(FImg);
subplot(122);
imshow(mat2gray(Fusion_dec))

```

相关文章
基于SC-FDE单载波频域均衡MQAM通信链路matlab仿真,包括帧同步,定时同步,载波同步,MMSE信道估计等
本内容主要介绍基于MATLAB的SC-FDE单载波频域均衡通信链路设计与实现,包括UW序列设计、QAM调制、帧同步、定时同步、载波同步、SNR估计和MMSE信道估计等关键环节。通过仿真(MATLAB 2022a),验证了系统的可行性和性能。核心程序展示了不同QAM调制方式(如256QAM)及同步算法的具体实现,并通过绘图展示帧同步、定时同步和频偏补偿效果。此研究为优化通信系统性能提供了理论与实践基础。
23 0
开关磁阻电机(SRM)系统的matlab性能仿真与分析
本课题基于MATLAB 2022a对开关磁阻电机(SRM)系统进行性能仿真与分析,涵盖平均转矩、转矩脉动、自感与互感、功率及效率等关键参数的对比研究。通过程序仿真,生成了相电流、转子角度、机械转速等多维度数据关系图。SRM以其无刷、无永磁体的特点,具备高可靠性和低成本优势,其工作原理基于磁阻最小原则,通过控制定子绕组电流实现连续旋转运动。核心程序实现了不同电流下平均转矩的计算与可视化,为SRM优化设计提供了理论依据。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于风险的完整性和检查建模(RBIIM)MATLAB仿真
本程序为基于风险的完整性和检查建模(RBIIM)的MATLAB仿真,适用于评估和优化资产完整性管理计划,特别针对石油化工等领域的管道、储罐等设备。程序在MATLAB 2022A版本下运行,对比了先验密度(Prior Density)、后验完美检测(Posterior Perfect Inspection)、后验不完美检测(Posterior Imperfect Inspection)及累积后验不完美检测四个关键指标。算法采用贝叶斯统计框架,通过更新资产健康状况估计,制定最佳维护与检查策略。示例展示了核心原理与运行效果,完整程序无水印。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
107 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。
基于GA遗传算法的拱桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现拱桥静载试验车辆最优布载的MATLAB仿真,旨在自动化确定车辆位置以满足加载效率要求(0.95≤ηq≤1.05),目标是使ηq尽量接近1,同时减少车辆数量和布载耗时。程序在MATLAB 2022A版本下运行,展示了工况1至工况3的测试结果。通过优化模型,综合考虑车辆重量、位置、类型及车道占用等因素,确保桥梁关键部位承受最大荷载,从而有效评估桥梁性能。核心代码实现了迭代优化过程,并输出最优布载方案及相关参数。
基于MobileNet深度学习网络的活体人脸识别检测算法matlab仿真
本内容主要介绍一种基于MobileNet深度学习网络的活体人脸识别检测技术及MQAM调制类型识别方法。完整程序运行效果无水印,需使用Matlab2022a版本。核心代码包含详细中文注释与操作视频。理论概述中提到,传统人脸识别易受非活体攻击影响,而MobileNet通过轻量化的深度可分离卷积结构,在保证准确性的同时提升检测效率。活体人脸与非活体在纹理和光照上存在显著差异,MobileNet可有效提取人脸高级特征,为无线通信领域提供先进的调制类型识别方案。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等