yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)

简介: yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)

多目标追踪+实例分割+目标检测

YOLO (You Only Look Once) 是一个流行的目标检测算法,它能够在图像中准确地定位和识别多个物体。

本项目是基于 YOLO 算法的目标跟踪系统,它将 YOLO 的目标检测功能与目标跟踪技术相结合,实现了实时的多目标跟踪。

在 目标追踪+语义分割+目标检测项目中,主要做了以下工作

  • 目标检测:利用 YOLO 算法进行目标检测,识别图像或视频中的各种物体,并确定它们的位置和类别。
  • 目标跟踪j:通过使用跟踪算法(如卡尔曼滤波器、光流法等),对检测到的目标进行跟踪,以实现目标在视频序列中的持续跟踪。
  • 实例分割:对目标检测后的目标进行mask,做到实例分割

跟踪算法大集合

  • deepsort:
    深度学习框架下的追踪算法,可以有效地处理遮挡、尺度变化和外观变化等问题。 通过深度特征提取和匹配,能够在复杂场景下实现高准确度的目标追踪。
  • strongsort:
    具有较强的鲁棒性和稳定性,对于复杂背景和光照变化的环境有较好的适应能力。 在处理大量目标时,能够保持较高的追踪质量。
  • ocsort:
    基于外观特征的追踪算法,对目标外观的描述准确度较高,适用于需要精确目标识别的场景。
    在多目标追踪时,能够有效地区分不同目标并保持稳定的追踪状态。
  • bytetrack:
    采用了高效的特征提取和匹配策略,具有较快的处理速度和较低的计算成本。
    在资源受限的环境下,能够提供良好的追踪性能,适用于嵌入式和移动设备等场景。
  • botsort:
    具有较好的可扩展性和灵活性,可以根据具体需求进行定制和优化。
    在复杂多变的追踪场景中,能够通过参数调整和模型配置进行有效适配,提供高度定制化的追踪解决方案。

优越性

  • 实时性能优化:针对目标跟踪系统的实时性能进行优化,使其能够在实时视频流中高效地进行目标检测和跟踪。

姿态估计

  • 人体关键点检测:通过图像或视频数据,识别并定位出人体的关键点,例如头部、肩膀、手肘、手腕、膝盖、脚踝等关键部位的位置。通常使用的是基于深度学习的关键点检测算法
  • 多目标处理:实现了多目标跟踪功能,能够同时跟踪并管理多个目标,并在复杂场景下保持良好的跟踪性能。


  • 应用场景:将 Y项目应用于实际场景,如智能监控、自动驾驶、无人机跟踪等领域,验证其在实际应用中的效果和可靠性。

代码部署

  1. requirements,txt列表(优选Linux环境),成功运行的包,兼容性能良好。
  2. 并且将yolov8.pt 和yolov8_seg.pt。放在根目录下。
  3. 或者直接运行脚本,也会在线下载权重文件!
_libgcc_mutex=0.1=main
_openmp_mutex=5.1=1_gnu
absl-py=2.0.0=pypi_0
beautifulsoup4=4.12.2=pypi_0
boxmot=10.0.43=dev_0
ca-certificates=2023.08.22=h06a4308_0
cachetools=5.3.2=pypi_0
certifi=2023.7.22=pypi_0
cfgv=3.4.0=pypi_0
charset-normalizer=3.3.2=pypi_0
contourpy=1.1.1=pypi_0
cycler=0.12.1=pypi_0
cython=3.0.5=pypi_0
dataclasses=0.6=pypi_0
distlib=0.3.7=pypi_0
filelock=3.13.1=pypi_0
filterpy=1.4.5=pypi_0
fonttools=4.43.1=pypi_0
ftfy=6.1.1=pypi_0
future=0.18.3=pypi_0
gdown=4.7.1=pypi_0
gitdb=4.0.11=pypi_0
gitpython=3.1.40=pypi_0
google-auth=2.23.4=pypi_0
google-auth-oauthlib=1.0.0=pypi_0
grpcio=1.59.2=pypi_0
identify=2.5.31=pypi_0
idna=3.4=pypi_0
importlib-metadata=6.8.0=pypi_0
importlib-resources=6.1.0=pypi_0
joblib=1.3.2=pypi_0
kiwisolver=1.4.5=pypi_0
lapx=0.5.5=pypi_0
ld_impl_linux-64=2.38=h1181459_1
libffi=3.4.4=h6a678d5_0
libgcc-ng=11.2.0=h1234567_1
libgomp=11.2.0=h1234567_1
libstdcxx-ng=11.2.0=h1234567_1
loguru=0.7.2=pypi_0
markdown=3.5.1=pypi_0
markupsafe=2.1.3=pypi_0
matplotlib=3.7.3=pypi_0
ncurses=6.4=h6a678d5_0
nodeenv=1.8.0=pypi_0
numpy=1.24.4=pypi_0
oauthlib=3.2.2=pypi_0
opencv-python=4.8.1.78=pypi_0
openssl=3.0.11=h7f8727e_2
packaging=23.2=pypi_0
pandas=2.0.3=pypi_0
pillow=10.1.0=pypi_0
pip=23.3=py38h06a4308_0
platformdirs=3.11.0=pypi_0
pre-commit=3.5.0=pypi_0
protobuf=4.25.0=pypi_0
psutil=5.9.6=pypi_0
py-cpuinfo=9.0.0=pypi_0
pyasn1=0.5.0=pypi_0
pyasn1-modules=0.3.0=pypi_0
pyparsing=3.1.1=pypi_0
pysocks=1.7.1=pypi_0
python=3.8.18=h955ad1f_0
python-dateutil=2.8.2=pypi_0
pytz=2023.3.post1=pypi_0
pyyaml=6.0.1=pypi_0
readline=8.2=h5eee18b_0
regex=2023.10.3=pypi_0
requests=2.31.0=pypi_0
requests-oauthlib=1.3.1=pypi_0
rsa=4.9=pypi_0
scikit-learn=1.3.2=pypi_0
scipy=1.10.1=pypi_0
seaborn=0.13.0=pypi_0
setuptools=68.0.0=py38h06a4308_0
six=1.16.0=pypi_0
smmap=5.0.1=pypi_0
soupsieve=2.5=pypi_0
sqlite=3.41.2=h5eee18b_0
tabulate=0.9.0=pypi_0
tensorboard=2.14.0=pypi_0
tensorboard-data-server=0.7.2=pypi_0
thop=0.1.1-2209072238=pypi_0
threadpoolctl=3.2.0=pypi_0
tk=8.6.12=h1ccaba5_0
torch=1.7.0=pypi_0
torchvision=0.8.1=pypi_0
tqdm=4.66.1=pypi_0
typing-extensions=4.8.0=pypi_0
tzdata=2023.3=pypi_0
ultralytics=8.0.146=pypi_0
urllib3=2.0.7=pypi_0
virtualenv=20.24.6=pypi_0
wcwidth=0.2.9=pypi_0
werkzeug=3.0.1=pypi_0
wheel=0.41.2=py38h06a4308_0
xz=5.4.2=h5eee18b_0
yacs=0.1.8=pypi_0
yolox=0.3.0=pypi_0
zipp=3.17.0=pypi_0
zlib=1.2.13=h5eee18b_0

你只需要输入以下指令:即可配置好环境!!!

conda create --name yolo_track  --file requiremnts.txt

目标检测运行

运行脚本:

$ python examples/track.py --yolo-model yolov8n       # bboxes only
  python examples/track.py --yolo-model yolo_nas_s    # bboxes only
  python examples/track.py --yolo-model yolox_n       # bboxes only
                                        yolov8n-seg   # bboxes + segmentation masks
                                        yolov8n-pose  # bboxes + pose estimation

目标跟踪

目标跟踪 脚本:

$ python examples/track.py --tracking-method deepocsort
                                             strongsort
                                             ocsort
                                             bytetrack
                                             botsort

ReID 模型

在追踪过程中,一些跟踪方法结合外观描述和运动信息。对于那些使用外观描述的方法,你可以根据自己的需求从 ReID 模型库中选择一个 ReID 模型。这些模型可以通过 reid_export.py 脚本进一步优化以满足你的需求。

$ python examples/track.py --source 0 --reid-model lmbn_n_cuhk03_d.pt               # lightweight
                                                   osnet_x0_25_market1501.pt
                                                   mobilenetv2_x1_4_msmt17.engine
                                                   resnet50_msmt17.onnx
                                                   osnet_x1_0_msmt17.pt
                                                   clip_market1501.pt               # heavy
                                                   clip_vehicleid.pt
                                                   ...

结果展示

下文展示了具体的视频实现效果!

qq1309399183

视频展示链接

相关文章
|
14天前
|
负载均衡 算法 关系型数据库
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
本文聚焦 MySQL 集群架构中的负载均衡算法,阐述其重要性。详细介绍轮询、加权轮询、最少连接、加权最少连接、随机、源地址哈希等常用算法,分析各自优缺点及适用场景。并提供 Java 语言代码实现示例,助力直观理解。文章结构清晰,语言通俗易懂,对理解和应用负载均衡算法具有实用价值和参考价值。
大数据大厂之MySQL数据库课程设计:揭秘MySQL集群架构负载均衡核心算法:从理论到Java代码实战,让你的数据库性能飙升!
|
15天前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
144 18
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
1月前
|
机器学习/深度学习 存储 算法
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
82 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
|
2月前
|
JavaScript 前端开发 算法
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
|
9天前
|
算法 数据安全/隐私保护
基于GA遗传算法的悬索桥静载试验车辆最优布载matlab仿真
本程序基于遗传算法(GA)实现悬索桥静载试验车辆最优布载的MATLAB仿真(2022A版)。目标是自动化确定车辆位置,使加载效率ηq满足0.95≤ηq≤1.05且尽量接近1,同时减少车辆数量与布载时间。核心原理通过优化模型平衡最小车辆使用与ηq接近1的目标,并考虑桥梁载荷、车辆间距等约束条件。测试结果展示布载方案的有效性,适用于悬索桥承载能力评估及性能检测场景。
|
9天前
|
算法 机器人 数据安全/隐私保护
基于双向RRT算法的三维空间最优路线规划matlab仿真
本程序基于双向RRT算法实现三维空间最优路径规划,适用于机器人在复杂环境中的路径寻找问题。通过MATLAB 2022A测试运行,结果展示完整且无水印。算法从起点和终点同时构建两棵随机树,利用随机采样、最近节点查找、扩展等步骤,使两棵树相遇以形成路径,显著提高搜索效率。相比单向RRT,双向RRT在高维或障碍物密集场景中表现更优,为机器人技术提供了有效解决方案。
|
1月前
|
存储 算法 调度
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
|
9天前
|
算法 JavaScript 数据安全/隐私保护
基于GA遗传优化的最优阈值计算认知异构网络(CHN)能量检测算法matlab仿真
本内容介绍了一种基于GA遗传优化的阈值计算方法在认知异构网络(CHN)中的应用。通过Matlab2022a实现算法,完整代码含中文注释与操作视频。能量检测算法用于感知主用户信号,其性能依赖检测阈值。传统固定阈值方法易受噪声影响,而GA算法通过模拟生物进化,在复杂环境中自动优化阈值,提高频谱感知准确性,增强CHN的通信效率与资源利用率。预览效果无水印,核心程序部分展示,适合研究频谱感知与优化算法的学者参考。
|
1月前
|
算法 安全 数据安全/隐私保护
基于AES的遥感图像加密算法matlab仿真
本程序基于MATLAB 2022a实现,采用AES算法对遥感图像进行加密与解密。主要步骤包括:将彩色图像灰度化并重置大小为256×256像素,通过AES的字节替换、行移位、列混合及轮密钥加等操作完成加密,随后进行解密并验证图像质量(如PSNR值)。实验结果展示了原图、加密图和解密图,分析了图像直方图、相关性及熵的变化,确保加密安全性与解密后图像质量。该方法适用于保护遥感图像中的敏感信息,在军事、环境监测等领域具有重要应用价值。
|
2月前
|
算法 数据可视化 BI
基于免疫算法的最优物流仓储点选址方案MATLAB仿真
本程序基于免疫算法实现物流仓储点选址优化,并通过MATLAB 2022A仿真展示结果。核心代码包括收敛曲线绘制、最优派送路线规划及可视化。算法模拟生物免疫系统,通过多样性生成、亲和力评价、选择、克隆、变异和抑制机制,高效搜索最优解。解决了物流仓储点选址这一复杂多目标优化问题,显著提升物流效率与服务质量。附完整无水印运行结果图示。
基于免疫算法的最优物流仓储点选址方案MATLAB仿真