基于包围盒算法的三维点云数据压缩和曲面重建matlab仿真

简介: 基于包围盒算法的三维点云数据压缩和曲面重建matlab仿真

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
随着三维扫描技术的快速发展,三维点云数据在多个领域,如计算机视觉、机器人技术和逆向工程中得到了广泛应用。然而,大规模的点云数据不仅存储成本高,而且处理速度慢,这限制了其在实时应用中的使用。为了解决这个问题,本文提出了一种基于包围盒算法的三维点云数据压缩和曲面重建方法。该方法通过减少点的数量同时保留原始点云的主要特征,从而实现了高效的数据压缩和精确的曲面重建。

   三维点云是空间中一系列点的集合,每个点都有其特定的坐标(x, y, z)。这些点可以通过各种方式获得,例如激光扫描、立体视觉等。随着技术的进步,获取的点云数据越来越密集,导致数据量迅速增长。因此,如何有效地压缩这些数据并从中重建出曲面成为了一个重要的问题。在过去的几十年中,许多研究致力于点云数据的压缩和曲面重建。其中,一些方法基于体素网格进行空间划分,另一些则使用迭代的方法对点进行聚类。然而,这些方法在处理大规模、高密度的点云数据时往往效率低下。

   基于包围盒算法的压缩与重建分为三个步骤:包围盒构建、点云压缩和曲面重建。

3.1 包围盒构建
首先,我们为整个点云构建一个初始的包围盒。然后,递归地将这个包围盒划分为更小的子盒,直到满足某个停止条件(如子盒中的点数少于某个阈值)。每个子盒都包含了一部分点云数据。

3.2 点云压缩
在每个子盒中,我们选择一个代表点来代替该盒子中的所有点。代表点的选择可以基于多种策略,如盒子的中心点或点云的质心。通过这种方式,大量的点被少数几个代表点所替代,从而实现了数据的压缩。

数学上,假设一个子盒B包含n个点{p1, p2, ..., pn},每个点的坐标为(x, y, z)。该子盒的代表点Pr可以计算为:
(Pr = \frac{1}{n} \sum_{i=1}^{n} p_i)
这里,Pr是子盒中所有点的坐标平均值。

3.3 曲面重建
在得到压缩后的代表点后,我们使用这些点作为控制点来构建一个三角网格,从而近似原始点云的曲面。具体地,我们可以使用Delaunay三角剖分或Ball Pivoting算法来生成三角网格。

4.部分核心程序

XYZc    = zeros(X_w*Y_w*Z_h,3);
for i=1:X_w
    Xc = Xmin+LL*(i-0.5);
    for j=1:Y_w
        Yc = Ymin+LL*(j-0.5);
        for k=1:Z_h
            Zc = Zmin+LL*(k-0.5);
            XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,1)=Xc;
            XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,2)=Yc;
            XYZc((i-1)*Y_w*Z_h+(j-1)*Z_h+k,3)=Zc;
        end
    end
end
%中心点与各个点云之间的距离矩阵
Mdist=zeros(Rr,4);
for i=1:Rr
    Mdist(i,1)=X_w2(i);
    Mdist(i,2)=Y_w2(i);
    Mdist(i,3)=Z_h2(i);
    Mdist(i,4)=sqrt((XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),1)-Data_3d(i,1))^2+...
                    (XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),2)-Data_3d(i,2))^2+...
                    (XYZc((X_w2(i)-1)*Y_w*Z_h+(Y_w2(i)-1)*Z_h+Z_h2(i),3)-Data_3d(i,3))^2);
end
[Y,X_w,Y_w]=unique(Mdist(:,1:3),'rows');

X          =zeros(length(X_w),1);
for i=1:length(X_w)
    X(i)=max(Mdist(Y_w==i,4));
end
Y=[Y X];


Data_box = Y(:,1:3);
[t]      = MyCrust(Data_box);
[w]      = MyCrust(Data_3d);

%原三维点云曲面图
figure
subplot(121);
axis equal
trisurf(w,Data_3d(:,1),Data_3d(:,2),Data_3d(:,3),'facecolor','c','edgecolor','b') 
grid on
view(-45,30)
xlabel('X');
ylabel('Y');
zlabel('Z');         
title('原三维点云曲面图');

%通过包围盒算法的三维点云曲面图
subplot(122);
axis equal
trisurf(t,Data_box(:,1),Data_box(:,2),Data_box(:,3),'facecolor','c','edgecolor','b') 
grid on
view(-45,30)
xlabel('X');
ylabel('Y');
zlabel('Z');    
title('通过包围盒算法的三维点云曲面图');
相关文章
|
20天前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。
|
19天前
|
算法
m基于log-MPA检测算法的SCMA通信链路matlab误码率仿真
MATLAB 2022a仿真实现了稀疏码多址接入(SCMA)算法,该算法利用码本稀疏性实现多用户高效接入。每个用户从码本中选取码字发送,接收端采用Log-MPA算法进行多用户检测。由于MAP检测计算复杂度高,故采用Log-MPA降低复杂性。仿真展示了不同迭代次数(1, 5, 10, 30)对误码率(BER)的影响,通过比较各次迭代的BER曲线,研究算法性能与迭代次数的关系。
15 0
|
21天前
|
算法 搜索推荐
基于遗传优化的协同过滤推荐算法matlab仿真
该内容是关于推荐系统和算法的描述。使用Matlab2022a执行的算法生成了推荐商品ID列表,显示了协同过滤在个性化推荐中的应用。用户兴趣模型通过获取用户信息并建立数学模型来提高推荐性能。程序片段展示了遗传算法(GA)的迭代过程,确定支持度阈值,并基于关联规则生成推荐商品ID。最终结果是推荐的商品ID列表,显示了算法的收敛和支持值。
|
1月前
|
机器学习/深度学习 算法 生物认证
基于深度学习的人员指纹身份识别算法matlab仿真
基于深度学习的人员指纹身份识别算法matlab仿真
|
1月前
|
算法
【MATLAB】语音信号识别与处理:滑动平均滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:滑动平均滤波算法去噪及谱相减算法呈现频谱
39 0
|
1月前
|
算法
【MATLAB】语音信号识别与处理:T1小波滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:T1小波滤波算法去噪及谱相减算法呈现频谱
29 0
|
27天前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的视频手部检测算法matlab仿真
基于yolov2深度学习网络的视频手部检测算法matlab仿真
|
1月前
|
算法
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
20 2
|
1月前
|
算法
【MATLAB】语音信号识别与处理:卷积滑动平均滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:卷积滑动平均滤波算法去噪及谱相减算法呈现频谱
26 0
|
1月前
|
算法
【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:一维信号NLM非局部均值滤波算法去噪及谱相减算法呈现频谱
34 1