基于ViT主干的扩散模型技术,开源!

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 近期大火的OpenAI推出的Sora模型,其核心技术点之一,是将视觉数据转化为Patch的统一表示形式,并通过Transformers技术和扩散模型结合,展现了卓越的scale特性。

引言

近期大火的OpenAI推出的Sora模型,其核心技术点之一,是将视觉数据转化为Patch的统一表示形式,并通过Transformers技术和扩散模型结合,展现了卓越的scale特性。

被Twitter上广泛传播的论文《Scalable diffusion models with transformers》也被认为是Sora技术背后的重要基础。而这项研究的发布遇到了一些坎坷,曾经被CVPR2023拒稿过。

无独有偶,虽然DiT被拒了,我们看到来自清华大学,人民大学和北京人工智能研究院等机构共同研究的CVPR2023的论文U-ViT《All are Worth Words: A ViT Backbone for Diffusion Models》,这项研究设计了一个简单而通用的基于vit的架构(U-ViT),替换了U-Net中的卷积神经网络(CNN),用于diffusion模型的图像生成任务。

该项研究现已开源,欢迎大家关注:

GitHub链接:

GitHub - baofff/U-ViT: A PyTorch implementation of the paper "All are Worth Words: A ViT Backbone for Diffusion Models".

论文链接:

[2209.12152] All are Worth Words: A ViT Backbone for Diffusion Models (arxiv.org)

模型链接:

imagenet256_uvit_huge · 模型库 (modelscope.cn)

同时,我们也意识到,Sora将基于Transformers的diffusion model scale up成功,不仅需要对底层算法有专家级理解,还要对整个深度学习工程体系有很好的把握,这项工作相比在学术数据集做出一个可行架构更加困难。

论文和代码技术解读

1、模型结构概览

基于卷积神经网络(CNN)的U-Net一直是之前的Diffusion Model中的主流backbone。基于CNN的U-Net具有一组下采样块和一组上采样块以及两组之间的Long skip connection的特征。然而视觉Transformers(ViT)在各类视觉任务重已经显示出很好的前景,其中ViT与基于CNN的方法效果相当甚至优于CNN。因此,论文的开篇就提出了一个问题:在扩散模型中是否有必要依赖基于CNN的U-Net?

在这篇研究中,遵循Transformers的设计方法,U-ViT将包括时间、条件和噪声图像patches在内的所有输入都视作为token。至关重要的是,U-ViT受U-Net启发,采用了浅层和深层之间的Long skip Connection。实际上,低级特征对于扩散模型中的像素级预测目标很重要,Long skip Connection可以简化对应预测网络的训练。此外,U-ViT可选的在输出之前增加了一个额外的3X3的卷积块,以获得更好的视觉质量。详见如下的模型架构图。

如上图所示,扩散模型的U-ViT架构,其特点是将时间,条件和噪声图像块在内的所有输入作为token,并在浅层和深层之间使用(blocks-1)/2 Long skip Connection。

结合上图,我们对UViT模型的结构做了一个大致的梳理,大家可以先有个初步的了解,下面我们将对提及的每个模块进行详细的介绍。

2、模型的输入

首先我们来看下模型的输入分别是哪些组成,是什么样的。

输入部分切合了论文的标题:All as words (token),将包括时间、条件和噪声图像快在内的所有输入表示为token,再通过Embedding层。

Embedding层的作用是将某种格式的输入数据,转变为模型可以处理的向量表示,来描述原始数据所包含的信息。

timestep_embedding

timestep_embedding,核心是为时间步长生成正弦嵌入,用于时序数据中引入时间信息,如下:

def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.
    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].float() * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding

Patchify函数

patchify函数,将图像划分为 patches ,示例图片如下:

代码:

def patchify(imgs, patch_size):
    x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size)
    return x

PatchEmbed:

通过卷积操作将图像转换为 patch token,即将图像分割成多个patches并投影到指定维度的向量空间。

代码:

class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, patch_size, in_chans=3, embed_dim=768):
        super().__init__()
        self.patch_size = patch_size
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
    def forward(self, x):
        B, C, H, W = x.shape
        assert H % self.patch_size == 0 and W % self.patch_size == 0
        x = self.proj(x).flatten(2).transpose(1, 2)
        return x

3、编解码结构设计

参考代码:

U-ViT/libs/autoencoder.py at main · baofff/U-ViT · GitHub

上采样代码,根据需求选择性地结合上采样和卷积操作,实现对输入特征图的上采样并可选地进行特征提取。

class Upsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)
    def forward(self, x):
        x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
        if self.with_conv:
            x = self.conv(x)
        return x

下采样代码,对输入的二维特征图(例如图像)进行下采样操作,即降低特征图的空间维度。

class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)
    def forward(self, x):
        if self.with_conv:
            pad = (0,1,0,1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x

Encoder设计采用了深度残差网络结构,并结合了多尺度注意力机制来增强特征学习能力,旨在高效地捕获输入图像中的关键信息并转化为适合下游任务(如图像生成)的潜在表征。

class Encoder(nn.Module):
    def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
                 attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
                 resolution, z_channels, double_z=True, use_linear_attn=False, attn_type="vanilla",
                 **ignore_kwargs):
        super().__init__()
        if use_linear_attn: attn_type = "linear"
        self.ch = ch
        self.temb_ch = 0
        self.num_resolutions = len(ch_mult)
        self.num_res_blocks = num_res_blocks
        self.resolution = resolution
        self.in_channels = in_channels
        # downsampling
        self.conv_in = torch.nn.Conv2d(in_channels,
                                       self.ch,
                                       kernel_size=3,
                                       stride=1,
                                       padding=1)
        curr_res = resolution
        in_ch_mult = (1,)+tuple(ch_mult)
        self.in_ch_mult = in_ch_mult
        self.down = nn.ModuleList()
        for i_level in range(self.num_resolutions):
            block = nn.ModuleList()
            attn = nn.ModuleList()
            block_in = ch*in_ch_mult[i_level]
            block_out = ch*ch_mult[i_level]
            for i_block in range(self.num_res_blocks):
                block.append(ResnetBlock(in_channels=block_in,
                                         out_channels=block_out,
                                         temb_channels=self.temb_ch,
                                         dropout=dropout))
                block_in = block_out
                if curr_res in attn_resolutions:
                    attn.append(make_attn(block_in, attn_type=attn_type))
            down = nn.Module()
            down.block = block
            down.attn = attn
            if i_level != self.num_resolutions-1:
                down.downsample = Downsample(block_in, resamp_with_conv)
                curr_res = curr_res // 2
            self.down.append(down)
        # middle
        self.mid = nn.Module()
        self.mid.block_1 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        self.mid.attn_1 = make_attn(block_in, attn_type=attn_type)
        self.mid.block_2 = ResnetBlock(in_channels=block_in,
                                       out_channels=block_in,
                                       temb_channels=self.temb_ch,
                                       dropout=dropout)
        # end
        self.norm_out = Normalize(block_in)
        self.conv_out = torch.nn.Conv2d(block_in,
                                        2*z_channels if double_z else z_channels,
                                        kernel_size=3,
                                        stride=1,
                                        padding=1)
    def forward(self, x):
        # timestep embedding
        temb = None
        # downsampling
        hs = [self.conv_in(x)]
        for i_level in range(self.num_resolutions):
            for i_block in range(self.num_res_blocks):
                h = self.down[i_level].block[i_block](hs[-1], temb)
                if len(self.down[i_level].attn) > 0:
                    h = self.down[i_level].attn[i_block](h)
                hs.append(h)
            if i_level != self.num_resolutions-1:
                hs.append(self.down[i_level].downsample(hs[-1]))
        # middle
        h = hs[-1]
        h = self.mid.block_1(h, temb)
        h = self.mid.attn_1(h)
        h = self.mid.block_2(h, temb)
        # end
        h = self.norm_out(h)
        h = nonlinearity(h)
        h = self.conv_out(h)
        return h

Decoder是一个递归结构,包含卷积层、残差块(ResnetBlock)、注意力机制(make_attn)以及上采样层(Upsample),可以逐步将低维潜在空间的向量(z)转换为高分辨率的图像。

class Downsample(nn.Module):
    def __init__(self, in_channels, with_conv):
        super().__init__()
        self.with_conv = with_conv
        if self.with_conv:
            # no asymmetric padding in torch conv, must do it ourselves
            self.conv = torch.nn.Conv2d(in_channels,
                                        in_channels,
                                        kernel_size=3,
                                        stride=2,
                                        padding=0)
    def forward(self, x):
        if self.with_conv:
            pad = (0,1,0,1)
            x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
            x = self.conv(x)
        else:
            x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
        return x

4、Transformers设计

注意力机制

UViT实现多头注意力机制,根据ATTENTION_MODE选择不同的计算方式,包括 Flash Attention、XFormers Attention 和Math attention。

以下是Attention模块的实现代码:

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
    def forward(self, x):
        B, L, C = x.shape
        qkv = self.qkv(x)
        if ATTENTION_MODE == 'flash':
            qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float()
            q, k, v = qkv[0], qkv[1], qkv[2]  # B H L D
            x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
            x = einops.rearrange(x, 'B H L D -> B L (H D)')
        elif ATTENTION_MODE == 'xformers':
            qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads)
            q, k, v = qkv[0], qkv[1], qkv[2]  # B L H D
            x = xformers.ops.memory_efficient_attention(q, k, v)
            x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads)
        elif ATTENTION_MODE == 'math':
            qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads)
            q, k, v = qkv[0], qkv[1], qkv[2]  # B H L D
            attn = (q @ k.transpose(-2, -1)) * self.scale
            attn = attn.softmax(dim=-1)
            attn = self.attn_drop(attn)
            x = (attn @ v).transpose(1, 2).reshape(B, L, C)
        else:
            raise NotImplemented
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

Transformers Block设计

Block类:一个基于Transformer编码器/解码器块,包含multi-head attention层和 MLP 层,并可选地使用skip connection以及 checkpoint进行内存优化。

class Block(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None,act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale)
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer)
        self.skip_linear = nn.Linear(2 * dim, dim) if skip else None
        self.use_checkpoint = use_checkpoint
    def forward(self, x, skip=None):
        if self.use_checkpoint:
            return torch.utils.checkpoint.checkpoint(self._forward, x, skip)
        else:
            return self._forward(x, skip)
    def _forward(self, x, skip=None):
        if self.skip_linear is not None:
            x = self.skip_linear(torch.cat([x, skip], dim=-1))
            x = x + self.attn(self.norm1(x))
            x = x + self.mlp(self.norm2(x))
        return x

5、UViT主干:

初始化包含了patch embedding模块、时间embedding模块(可以选择MLP形式的时间嵌入)、Class embedding、Position embedding等。

定义了in_blocks和out_blocks部分,中间还有一个mid_block。

最后,模型通过decoder_pred线性层预测出patch级别的特征,然后重构回原始图像尺寸。

在前向过程中,模型首先对输入图像进行patch化处理,接着添加time embedding(如果有提供时间步信息的话)以及position embedding。经过一系列的编码器和解码器block后,输出被映射回patch级别特征,再重构为图像尺寸,最后通过一个可选的3X3卷积层或者恒等映射输出最终结果。

class UViT(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.,
                 qkv_bias=False, qk_scale=None, norm_layer=nn.LayerNorm, mlp_time_embed=False, num_classes=-1,
                 use_checkpoint=False, conv=True, skip=True):
        super().__init__()
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models
        self.num_classes = num_classes
        self.in_chans = in_chans
        self.patch_embed = PatchEmbed(patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
        num_patches = (img_size // patch_size) ** 2
        self.time_embed = nn.Sequential(
            nn.Linear(embed_dim, 4 * embed_dim),
            nn.SiLU(),
            nn.Linear(4 * embed_dim, embed_dim),
        ) if mlp_time_embed else nn.Identity()
        if self.num_classes > 0:
            self.label_emb = nn.Embedding(self.num_classes, embed_dim)
            self.extras = 2
        else:
            self.extras = 1
        self.pos_embed = nn.Parameter(torch.zeros(1, self.extras + num_patches, embed_dim))
        self.in_blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                norm_layer=norm_layer, use_checkpoint=use_checkpoint)
            for _ in range(depth // 2)])
        self.mid_block = Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                norm_layer=norm_layer, use_checkpoint=use_checkpoint)
        self.out_blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                norm_layer=norm_layer, skip=skip, use_checkpoint=use_checkpoint)
            for _ in range(depth // 2)])
        self.norm = norm_layer(embed_dim)
        self.patch_dim = patch_size ** 2 * in_chans
        self.decoder_pred = nn.Linear(embed_dim, self.patch_dim, bias=True)
        self.final_layer = nn.Conv2d(self.in_chans, self.in_chans, 3, padding=1) if conv else nn.Identity()
        trunc_normal_(self.pos_embed, std=.02)
        self.apply(self._init_weights)
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed'}
    def forward(self, x, timesteps, y=None):
        x = self.patch_embed(x)
        B, L, D = x.shape
        time_token = self.time_embed(timestep_embedding(timesteps, self.embed_dim))
        time_token = time_token.unsqueeze(dim=1)
        x = torch.cat((time_token, x), dim=1)
        if y is not None:
            label_emb = self.label_emb(y)
            label_emb = label_emb.unsqueeze(dim=1)
            x = torch.cat((label_emb, x), dim=1)
        x = x + self.pos_embed
        skips = []
        for blk in self.in_blocks:
            x = blk(x)
            skips.append(x)
        x = self.mid_block(x)
        for blk in self.out_blocks:
            x = blk(x, skips.pop())
        x = self.norm(x)
        x = self.decoder_pred(x)
        assert x.size(1) == self.extras + L
        x = x[:, self.extras:, :]
        x = unpatchify(x, self.in_chans)
        x = self.final_layer(x)
        return x

实战案例

实战案例是通过扩散模型,在给定类别标签条件下,使用UViT作为主干,生成连续图像样本,并展示了生成的结果。

根据UViT官方的实践代码(U-ViT/UViT_ImageNet_demo.ipynb at main · baofff/U-ViT · GitHub)修改,可直接在魔搭社区的免费算力上实践和运行。

魔搭案例链接:

modelscope/examples/pytorch/UViT_ImageNet_demo.ipynb at master · modelscope/modelscope · GitHub

1、环境依赖安装

!git clone https://github.com/baofff/U-ViT
!pip install einops
import os
os.chdir('/mnt/workspace/U-ViT')
os.environ['PYTHONPATH'] = '/env/python:/mnt/workspace/U-ViT'
import torch
from dpm_solver_pp import NoiseScheduleVP, DPM_Solver
import libs.autoencoder
from libs.uvit import UViT
import einops
from torchvision.utils import save_image
from PIL import Image
from modelscope.hub.file_download import model_file_download

2、加载UViT模型

设置图像尺寸为256,下载对应的UViT模型,计算Latent Space的低维潜在表示的尺寸大小,初始化UViT模型结构,加载模型。

image_size = "256" #@param [256, 512]
image_size = int(image_size)
if image_size == 256:
    #download uvit model
    model_file_download(model_id='thu-ml/imagenet256_uvit_huge',file_path='imagenet256_uvit_huge.pth', cache_dir='/mnt/workspace')
    !mv /mnt/workspace/thu-ml/imagenet256_uvit_huge/imagenet256_uvit_huge.pth /mnt/workspace/U-ViT
else:
    model_file_download(model_id='thu-ml/imagenet512_uvit_huge',file_path='imagenet512_uvit_huge.pth', cache_dir='/mnt/workspace')
    !mv /mnt/workspace/thu-ml/imagenet512_uvit_huge/imagenet512_uvit_huge.pth /mnt/workspace/U-ViT
z_size = image_size // 8
patch_size = 2 if image_size == 256 else 4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
nnet = UViT(img_size=z_size,
       patch_size=patch_size,
       in_chans=4,
       embed_dim=1152,
       depth=28,
       num_heads=16,
       num_classes=1001,
       conv=False)
nnet.to(device)
nnet.load_state_dict(torch.load(f'imagenet{image_size}_uvit_huge.pth', map_location='cpu'))
nnet.eval()

3、下载自动编码器模型并加载

model_file_download(model_id='AI-ModelScope/autoencoder_kl_ema',file_path='autoencoder_kl_ema.pth', cache_dir='/mnt/workspace')
!mv /mnt/workspace/AI-ModelScope/autoencoder_kl_ema/autoencoder_kl_ema.pth /mnt/workspace/U-ViT
autoencoder = libs.autoencoder.get_model('autoencoder_kl_ema.pth')
autoencoder.to(device)

4、UViT结合diffusion模型实现图像生成

通过扩散模型,在给定类别标签条件下,使用UViT作为主干,生成连续图像样本,并展示了生成的结果。Sample方式为dpm_solver。

seed = 42 #@param {type:"number"}
steps = 25 #@param {type:"slider", min:0, max:1000, step:1}
cfg_scale = 3 #@param {type:"slider", min:0, max:10, step:0.1}
class_labels = 207, 360, 387, 974, 88, 979, 417, 279 #@param {type:"raw"}
samples_per_row = 4 #@param {type:"number"}
torch.manual_seed(seed)
def stable_diffusion_beta_schedule(linear_start=0.00085, linear_end=0.0120, n_timestep=1000):
    _betas = (
        torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
    )
    return _betas.numpy()
_betas = stable_diffusion_beta_schedule()  # set the noise schedule
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=torch.tensor(_betas, device=device).float())
y = torch.tensor(class_labels, device=device)
y = einops.repeat(y, 'B -> (B N)', N=samples_per_row)
def model_fn(x, t_continuous):
    t = t_continuous * len(_betas)
    _cond = nnet(x, t, y=y)
    _uncond = nnet(x, t, y=torch.tensor([1000] * x.size(0), device=device))
    return _cond + cfg_scale * (_cond - _uncond)  # classifier free guidance
z_init = torch.randn(len(y), 4, z_size, z_size, device=device)
dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True, thresholding=False)
with torch.no_grad():
  with torch.cuda.amp.autocast():  # inference with mixed precision
    z = dpm_solver.sample(z_init, steps=steps, eps=1. / len(_betas), T=1.)
    samples = autoencoder.decode(z)
samples = 0.5 * (samples + 1.)
samples.clamp_(0., 1.)
save_image(samples, "sample.png", nrow=samples_per_row * 2, padding=0)
samples = Image.open("sample.png")
display(samples)

总结

正如论文中所说,具有UViT的latent diffusion模型在Im-ageNet 256X256上类条件图像生成中获得了创纪录的2.29分FID,在MS-COCO上的文本到图像生成中获得了5.48FID的高分,感谢UViT开源相应的工作,我们相信,基于UViT的研究基础上,开发者们可以更好的展开类似Sora这样的前沿技术研究工作。

GITHUB链接:

GitHub - baofff/U-ViT: A PyTorch implementation of the paper "All are Worth Words: A ViT Backbone for Diffusion Models".

相关文章
|
机器学习/深度学习 算法 数据挖掘
即插即用 | 通过自适应聚类Transformer来提升DERT目标检测器的速度(文末附论文下载)(一)
即插即用 | 通过自适应聚类Transformer来提升DERT目标检测器的速度(文末附论文下载)(一)
848 0
|
4月前
|
机器学习/深度学习 算法 网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
【YOLOv8改进 - Backbone主干】EfficientRep:一种旨在提高硬件效率的RepVGG风格卷积神经网络架构
|
2月前
|
机器学习/深度学习 数据采集
详解Diffusion扩散模型:理论、架构与实现
【9月更文挑战第23天】扩散模型(Diffusion Models)是一类基于随机过程的深度学习模型,通过逐步加噪和去噪实现图像生成,在此领域表现优异。模型分正向扩散和反向生成两阶段:前者从真实数据加入噪声至完全噪音,后者则学习从噪声中恢复数据,经由反向过程逐步还原生成清晰图像。其主要架构采用U-net神经网络,实现过程中需数据预处理及高斯噪声添加等步骤,最终通过模型逆向扩散生成新数据,具有广泛应用前景。
|
6月前
|
机器学习/深度学习 编解码 算法
YOLOv8改进 | 主干网络 | 增加网络结构增强小目标检测能力【独家创新——附结构图】
YOLOv8在小目标检测上存在挑战,因卷积导致信息丢失。本文教程将原网络结构替换为更适合小目标检测的backbone,并提供结构图。通过讲解原理和手把手教学,指导如何修改代码,提供完整代码实现,适合新手实践。文章探讨了大特征图对小目标检测的重要性,如细节保留、定位精度、特征丰富度和上下文信息,并介绍了FPN等方法。YOLOv8流程包括预处理、特征提取、融合和检测。修改后的网络结构增加了上采样和concatenate步骤,以利用更大特征图检测小目标。完整代码和修改后的结构图可在文中链接获取。
|
6月前
|
机器学习/深度学习
YOLOv8改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
YOLOv8改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
383 1
YOLOv8改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
|
6月前
|
机器学习/深度学习 编解码 算法
助力目标检测涨点 | 可以这样把Vision Transformer知识蒸馏到CNN模型之中
助力目标检测涨点 | 可以这样把Vision Transformer知识蒸馏到CNN模型之中
238 0
|
6月前
|
机器学习/深度学习 编解码
YOLOv5改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
YOLOv5改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN
289 0
|
6月前
|
机器学习/深度学习
YOLOv8改进 | 主干篇 | EfficientViT高效的特征提取网络完爆MobileNet系列(轻量化网络结构)
YOLOv8改进 | 主干篇 | EfficientViT高效的特征提取网络完爆MobileNet系列(轻量化网络结构)
496 0
|
机器学习/深度学习 人工智能 编解码
一文梳理视觉Transformer架构进展:与CNN相比,ViT赢在哪儿?(1)
一文梳理视觉Transformer架构进展:与CNN相比,ViT赢在哪儿?
601 0
|
机器学习/深度学习 编解码 计算机视觉
Transformer新SOTA | 超越SWin、CSWin,MAFormer再探ViT Backbone新高度
Transformer新SOTA | 超越SWin、CSWin,MAFormer再探ViT Backbone新高度
271 0

热门文章

最新文章