YOLOv8改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN

简介: YOLOv8改进 | 2023主干篇 | RepViT从视觉变换器(ViT)的视角重新审视CNN

一、本文介绍

本文给大家来的改进机制是RepViT,用其替换我们整个主干网络,其是今年最新推出的主干网络,其主要思想是将轻量级视觉变换器(ViT)的设计原则应用于传统的轻量级卷积神经网络(CNN)。我将其替换整个YOLOv8的Backbone,实现了大幅度涨点。我对修改后的网络(我用的最轻量的版本),在一个包含1000张图片包含大中小的检测目标的数据集上(共有20+类别),进行训练测试,发现所有的目标上均有一定程度的涨点效果,下面我会附上基础版本和修改版本的训练对比图。


推荐指数:⭐⭐⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、RepViT基本原理

image.png

RepViT: Revisiting Mobile CNN From ViT Perspective 这篇论文探讨了如何改进轻量级卷积神经网络(CNN)以提高其在移动设备上的性能和效率。作者们发现,虽然轻量级视觉变换器(ViT)因其能够学习全局表示而表现出色,但轻量级CNN和轻量级ViT之间的架构差异尚未得到充分研究。因此,他们通过整合轻量级ViT的高效架构设计,逐步改进标准轻量级CNN(特别是MobileNetV3),从而创造了一系列全新的纯CNN模型,称为RepViT。这些模型在各种视觉任务上表现出色,比现有的轻量级ViT更高效。

其主要的改进机制包括:

  1. 结构性重组:通过结构性重组(Structural Re-parameterization, SR),引入多分支拓扑结构,以提高训练时的性能。
  2. 扩展比率调整:调整卷积层中的扩展比率,以减少参数冗余和延迟,同时提高网络宽度以增强模型性能。
  3. 宏观设计优化:对网络的宏观架构进行优化,包括早期卷积层的设计、更深的下采样层、简化的分类器,以及整体阶段比例的调整。
  4. 微观设计调整:在微观架构层面进行优化,包括卷积核大小的选择和压缩激励(SE)层的最佳放置。

这些创新机制共同推动了轻量级CNN的性能和效率,使其更适合在移动设备上使用,下面的是官方论文中的结构图,我们对其进行简单的分析。

image.png

每个阶段的通道维度用 Ci 表示,批处理大小用 B 表示。

  • Stem:用于预处理输入图像的模块。
  • Stage1-4:每个阶段由多个RepViTBlock组成,以及一个可选的RepViTSEBlock,包含深度可分离卷积(3x3DW),1x1卷积,压缩激励模块(SE)和前馈网络(FFN)。每个阶段通过下采样减少空间维度。
  • Pooling:全局平均池化层,用于减少特征图的空间维度。
  • FC:全连接层,用于最终的类别预测。

总结:大家可以将RepViT看成是MobileNet系列的改进版本

目录
相关文章
|
6月前
|
机器学习/深度学习 测试技术 Ruby
YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
YOLOv8改进 | 主干篇 | 反向残差块网络EMO一种轻量级的CNN架构(附完整代码 + 修改教程)
207 0
|
4月前
|
机器学习/深度学习 计算机视觉 异构计算
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
【YOLOv8改进 - Backbone主干】ShuffleNet V2:卷积神经网络(CNN)架构
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
【YOLOv8改进 - 注意力机制】c2f结合CBAM:针对卷积神经网络(CNN)设计的新型注意力机制
|
22天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第7天】本文将深入探讨卷积神经网络(CNN)的基本原理,以及它如何在图像识别领域中大放异彩。我们将从CNN的核心组件出发,逐步解析其工作原理,并通过一个实际的代码示例,展示如何利用Python和深度学习框架实现一个简单的图像分类模型。文章旨在为初学者提供一个清晰的入门路径,同时为有经验的开发者提供一些深入理解的视角。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其应用
【9月更文挑战第24天】本文将深入探讨深度学习中的一种重要模型——卷积神经网络(CNN)。我们将通过简单的代码示例,了解CNN的工作原理和应用场景。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息。
82 1
|
8天前
|
机器学习/深度学习 人工智能 自动驾驶
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第21天】本文旨在深入探讨深度学习领域的核心组成部分——卷积神经网络(CNN)。通过分析CNN的基本结构、工作原理以及在图像识别、语音处理等领域的广泛应用,我们不仅能够理解其背后的技术原理,还能把握其在现实世界问题解决中的强大能力。文章将用浅显的语言和生动的例子带领读者一步步走进CNN的世界,揭示这一技术如何改变我们的生活和工作方式。
|
15天前
|
机器学习/深度学习 人工智能 监控
深入理解深度学习中的卷积神经网络(CNN):从原理到实践
【10月更文挑战第14天】深入理解深度学习中的卷积神经网络(CNN):从原理到实践
49 1
|
3天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
11天前
|
机器学习/深度学习 人工智能 自动驾驶
深入理解深度学习中的卷积神经网络(CNN)
【10月更文挑战第18天】深入理解深度学习中的卷积神经网络(CNN)
23 0
|
14天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。

热门文章

最新文章