基于huffman编解码的图像压缩算法matlab仿真

简介: 基于huffman编解码的图像压缩算法matlab仿真

1.算法运行效果图预览
dc4f8934dc351f6b3cfce81fff9448c7_82780907_202402201841340372681472_Expires=1708426294&Signature=cm01EPFIim4Zu0FUrqo4OzdPUz4%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
Huffman编码是一种用于无损数据压缩的熵编码算法。由David A. Huffman在1952年提出。该算法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码。

3.1 Huffman编码算法步骤
初始化:根据符号概率的大小顺序对符号进行排序,即按概率大小排序,得到符号序列。
创建节点:将概率最小的两个节点相加,并作为一个新节点,新节点的概率为这两个节点概率之和。然后,将这两个节点从概率队列中删除,将新节点插入队列中。
更新队列:重复上一步骤,直到队列中只剩下一个节点为止。此时,这个节点就是Huffman树的根节点。
生成编码:从根节点开始,向左的边标记为0,向右的边标记为1。然后,从根节点到每个叶节点的路径就构成了该叶节点对应符号的Huffman编码。

3.2 Huffman编码的数学原理
Huffman编码的数学原理主要基于信息论中的熵的概念。熵是一个用于度量随机变量不确定性的量。对于一个离散随机变量X,其熵H(X)定义为:

41e36ae66fb324c1eb4f9f97af7e4395_82780907_202402201840180527596368_Expires=1708426218&Signature=9%2FHyRk4SHNzvQYQiqO3wdmsfERc%3D&domain=8.png

    Huffman编码的主要思想是,对于出现概率高的符号,赋予较短的编码;对于出现概率低的符号,赋予较长的编码。这样,平均码长就会接近熵的下界,从而实现高效的无损压缩。

3.3 基于Huffman编解码的图像压缩
在图像压缩中,首先需要将图像数据转换为一系列符号。这可以通过多种方式实现,例如可以将像素值作为符号,或者将像素值的差值作为符号。然后,统计这些符号的出现概率,并使用Huffman编码算法生成对应的Huffman编码。最后,将编码后的数据以及Huffman树的结构信息一起存储或传输。

   解码时,首先读取Huffman树的结构信息,重建Huffman树。然后,根据Huffman树对编码后的数据进行解码,得到原始的符号序列。最后,将符号序列转换回图像数据。

   Huffman编码是一种非常有效的无损数据压缩算法,特别适用于处理具有不同出现概率的符号序列。在图像压缩中,通过将图像数据转换为符号序列,并使用Huffman编码对符号进行压缩,可以实现较高的压缩比和较好的图像质量。同时,由于Huffman编码是无损的,因此解压后的图像与原始图像完全一致,不会引入任何失真。

4.部分核心程序

```for ij = 1:size(I0,3)
I = I0(:,:,ij);
[m,n] = size(I);
% 将当前通道的图像展平为一维向量
Ivect = I(:);
% 获取当前通道的唯一像素值和它们的频率
symb = single(unique(Ivect));
cnts = hist(Ivect, symb);
Probs = double(cnts) ./ sum(cnts);

% 计算Huffman编码字典和平均长度  
[dictionary,Lens(ij)] = func_huffdict(symb,Probs); 


% 对当前通道的图像进行Huffman编码  
Ienc                  = func_huffencode(symb,dictionary,Ivect); 

% 对Huffman编码进行解码,得到无损压缩后的像素值  
Idec                  = func_huffdecode(symb,dictionary,Ienc);
% 将解码后的一维向量重塑为二维图像  
Iout(:,:,ij)          = reshape(Idec,m,[]);

end

% 将无损压缩后的图像保存为JPEG格式
imwrite(Iout,'cmps.jpeg');
% 显示图像及其相关信息
figure;
Isize1 = imfinfo(Names).FileSize;
Isize2 = (Isize1(sum(Lens(:))/3))/8;
CmpRates = 100
((Isize1 - Isize2)/Isize1);

subplot(1,2,1);
imshow(I0);
title(sprintf("原图 \n 容量: "+ Isize1/(1024*1024) + " MB"));

subplot(1,2,2);
imshow(Iout);
title(sprintf("压缩图 \n 容量: "+ Isize2/(1024*1024) + " MB \n 压缩率: "+CmpRates+"%%]"));

```

相关文章
|
1天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
|
5天前
|
文字识别 算法 计算机视觉
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
12 0
|
8天前
|
机器学习/深度学习 算法
【MATLAB】GA_ELM神经网络时序预测算法
【MATLAB】GA_ELM神经网络时序预测算法
279 9
|
20天前
雷达模糊函数及MATLAB仿真(三)
雷达模糊函数及MATLAB仿真
15 0
|
20天前
雷达模糊函数及MATLAB仿真(一)
雷达模糊函数及MATLAB仿真
25 0
|
20天前
雷达检测及MATLAB仿真(三)
雷达检测及MATLAB仿真
21 0
|
1月前
|
机器学习/深度学习 算法 生物认证
基于深度学习的人员指纹身份识别算法matlab仿真
基于深度学习的人员指纹身份识别算法matlab仿真
|
28天前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于yolov2深度学习网络的视频手部检测算法matlab仿真
基于yolov2深度学习网络的视频手部检测算法matlab仿真
|
1月前
|
算法
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
【MATLAB】语音信号识别与处理:移动中位数滤波算法去噪及谱相减算法呈现频谱
23 2

热门文章

最新文章