基于huffman编解码的图像压缩算法matlab仿真

简介: 基于huffman编解码的图像压缩算法matlab仿真

1.算法运行效果图预览
dc4f8934dc351f6b3cfce81fff9448c7_82780907_202402201841340372681472_Expires=1708426294&Signature=cm01EPFIim4Zu0FUrqo4OzdPUz4%3D&domain=8.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
Huffman编码是一种用于无损数据压缩的熵编码算法。由David A. Huffman在1952年提出。该算法完全依据字符出现概率来构造异字头的平均长度最短的码字,有时称之为最佳编码,一般就叫做Huffman编码。

3.1 Huffman编码算法步骤
初始化:根据符号概率的大小顺序对符号进行排序,即按概率大小排序,得到符号序列。
创建节点:将概率最小的两个节点相加,并作为一个新节点,新节点的概率为这两个节点概率之和。然后,将这两个节点从概率队列中删除,将新节点插入队列中。
更新队列:重复上一步骤,直到队列中只剩下一个节点为止。此时,这个节点就是Huffman树的根节点。
生成编码:从根节点开始,向左的边标记为0,向右的边标记为1。然后,从根节点到每个叶节点的路径就构成了该叶节点对应符号的Huffman编码。

3.2 Huffman编码的数学原理
Huffman编码的数学原理主要基于信息论中的熵的概念。熵是一个用于度量随机变量不确定性的量。对于一个离散随机变量X,其熵H(X)定义为:

41e36ae66fb324c1eb4f9f97af7e4395_82780907_202402201840180527596368_Expires=1708426218&Signature=9%2FHyRk4SHNzvQYQiqO3wdmsfERc%3D&domain=8.png

    Huffman编码的主要思想是,对于出现概率高的符号,赋予较短的编码;对于出现概率低的符号,赋予较长的编码。这样,平均码长就会接近熵的下界,从而实现高效的无损压缩。

3.3 基于Huffman编解码的图像压缩
在图像压缩中,首先需要将图像数据转换为一系列符号。这可以通过多种方式实现,例如可以将像素值作为符号,或者将像素值的差值作为符号。然后,统计这些符号的出现概率,并使用Huffman编码算法生成对应的Huffman编码。最后,将编码后的数据以及Huffman树的结构信息一起存储或传输。

   解码时,首先读取Huffman树的结构信息,重建Huffman树。然后,根据Huffman树对编码后的数据进行解码,得到原始的符号序列。最后,将符号序列转换回图像数据。

   Huffman编码是一种非常有效的无损数据压缩算法,特别适用于处理具有不同出现概率的符号序列。在图像压缩中,通过将图像数据转换为符号序列,并使用Huffman编码对符号进行压缩,可以实现较高的压缩比和较好的图像质量。同时,由于Huffman编码是无损的,因此解压后的图像与原始图像完全一致,不会引入任何失真。

4.部分核心程序

```for ij = 1:size(I0,3)
I = I0(:,:,ij);
[m,n] = size(I);
% 将当前通道的图像展平为一维向量
Ivect = I(:);
% 获取当前通道的唯一像素值和它们的频率
symb = single(unique(Ivect));
cnts = hist(Ivect, symb);
Probs = double(cnts) ./ sum(cnts);

% 计算Huffman编码字典和平均长度  
[dictionary,Lens(ij)] = func_huffdict(symb,Probs); 


% 对当前通道的图像进行Huffman编码  
Ienc                  = func_huffencode(symb,dictionary,Ivect); 

% 对Huffman编码进行解码,得到无损压缩后的像素值  
Idec                  = func_huffdecode(symb,dictionary,Ienc);
% 将解码后的一维向量重塑为二维图像  
Iout(:,:,ij)          = reshape(Idec,m,[]);

end

% 将无损压缩后的图像保存为JPEG格式
imwrite(Iout,'cmps.jpeg');
% 显示图像及其相关信息
figure;
Isize1 = imfinfo(Names).FileSize;
Isize2 = (Isize1(sum(Lens(:))/3))/8;
CmpRates = 100
((Isize1 - Isize2)/Isize1);

subplot(1,2,1);
imshow(I0);
title(sprintf("原图 \n 容量: "+ Isize1/(1024*1024) + " MB"));

subplot(1,2,2);
imshow(Iout);
title(sprintf("压缩图 \n 容量: "+ Isize2/(1024*1024) + " MB \n 压缩率: "+CmpRates+"%%]"));

```

相关文章
|
13天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
21天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
22天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
22天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1天前
|
算法
基于大爆炸优化算法的PID控制器参数寻优matlab仿真
本研究基于大爆炸优化算法对PID控制器参数进行寻优,并通过Matlab仿真对比优化前后PID控制效果。使用MATLAB2022a实现核心程序,展示了算法迭代过程及最优PID参数的求解。大爆炸优化算法通过模拟宇宙大爆炸和大收缩过程,在搜索空间中迭代寻找全局最优解,特别适用于PID参数优化,提升控制系统性能。
|
23天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
22天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
42 3
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。