基于NIQE算法的图像无参考质量评价算法matlab仿真

简介: 基于NIQE算法的图像无参考质量评价算法matlab仿真

1.算法运行效果图预览

2f89a6ee01e55fe09b75eacdc56cb87d_82780907_202402132215190139397978_Expires=1707834319&Signature=BsOrncqyJfgvanWi%2FQm85%2Fp2stA%3D&domain=8.jpeg
7484e62d905ce94c654037fafc110858_82780907_202402132215190201151849_Expires=1707834319&Signature=Ud4Wt8IzfpOm9Tlc4uFHUn8z6GY%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
NIQE(Naturalness Image Quality Evaluator)算法是一种无参考图像质量评价算法,旨在评估图像的自然度,即图像看起来是否像自然场景。 NIQE基于一组“质量感知”特征,并将其拟合到MVG模型中。质量感知特征源于一个简单但高度正则化的NSS模型。然后,将给定的测试图像的NIQE指标表示为从测试图像中提取的NSS特征的MVG模型与从自然图像语料中提取的质量感知特征的MVG模型之间的距离。整个过程由五步操作完成:

3.1 空域NSS特征提取

6e2454b95ee8787f34ccc5bb2f7ee04d_82780907_202402132214020794204708_Expires=1707834242&Signature=NKjovcOYcL5Z5Ho1QWIiPmcalrA%3D&domain=8.png

3.2 图像块选取

   一旦图像的系数由(1)式计算出,整张图像会被分割成P × P P\times{P}P×P的块。然后从每个块的系数中计算出特殊的NSS特征。方差(3)在之前的基于NSS的图片分析中常常被忽视。但是它在结构化图片信息上有丰富的内容。这些内容可以被用来量化局部图片的锐利度。(从美学上认为一幅图片越锐利它的成像效果会越好,平滑模糊代表一种视觉信息的潜在损失。)将P × P P\times{P}P×P的图像块用b = 1 , 2 , . . . , B b=1,2,...,Bb=1,2,...,B做标记,再用一种直接的方法计算每一块b bb平均局部偏移范围:

e805bb5323492523bae518375d852df5_82780907_202402132213520451300576_Expires=1707834232&Signature=ZYKh%2Fyv4p6r5bwdelVi8j%2ByD6b8%3D&domain=8.png

3.3 MVG模型
通过将自然图像块与MVG模型密度函数拟合,可以得到一个简单的NSS特征模型,MVG模型密度函数为:

983685b1cf6dde719a67741a829b279f_82780907_202402132212380668437017_Expires=1707834158&Signature=pwM%2BiMux54vdfNIN8OVkleBAarg%3D&domain=8.png

3.4 NIQE指标
NIQE分数的计算,是通过计算待测图片MVG模型参数和上面得到的自然图片MVG模型参数的距离来得到(如下式)。不过选择patch的准则(1)不应用到待测图片上,而只用在上面自然图片模型参数估计上。原因如下:

af2b16536018b28dc0505f731eeffeb4_82780907_202402132212270933848764_Expires=1707834147&Signature=agwkykmHoIneDdjzPDMjw9FVtsc%3D&domain=8.png

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

Rbk     = 48;
Cbk     = 48;
Rlap    = 0;
Clap    = 0;
%加入不同的噪声,估计图像质量
im1     = imread('1.bmp');
quality1= func_quality(im1,Rbk,Cbk,Rlap,Clap);

im2     = imnoise(im1,'salt & pepper',0.001); %加入不同的噪声,估计图像质量
quality2= func_quality(im2,Rbk,Cbk,Rlap,Clap);


im3     = imnoise(im1,'salt & pepper',0.01); %加入不同的噪声,估计图像质量
quality3= func_quality(im3,Rbk,Cbk,Rlap,Clap);

im4     = imnoise(im1,'salt & pepper',0.05); %加入不同的噪声,估计图像质量
quality4= func_quality(im4,Rbk,Cbk,Rlap,Clap);

im5     = imnoise(im1,'salt & pepper',0.1); %加入不同的噪声,估计图像质量
quality5= func_quality(im5,Rbk,Cbk,Rlap,Clap);

im6     = imnoise(im1,'salt & pepper',0.25); %加入不同的噪声,估计图像质量
quality6= func_quality(im6,Rbk,Cbk,Rlap,Clap);


figure;
subplot(231);
imshow(im1);
title(['质量估计值:',num2str(100/quality1)]);

subplot(232);
imshow(im2);
title(['质量估计值:',num2str(100/quality2)]);

subplot(233);
imshow(im3);
title(['质量估计值:',num2str(100/quality3)]);

subplot(234);
imshow(im4);
title(['质量估计值:',num2str(100/quality4)]);

subplot(235);
imshow(im5);
title(['质量估计值:',num2str(100/quality5)]);

subplot(236);
imshow(im6);
title(['质量估计值:',num2str(100/quality6)]);
相关文章
|
1天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
102 80
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
26 16
|
20小时前
|
编解码 算法 数据安全/隐私保护
基于BP译码的LDPC误码率matlab仿真,分析不同码长,码率,迭代次数以及信道类型对译码性能的影响
本内容介绍基于MATLAB 2022a的低密度奇偶校验码(LDPC)仿真,展示了完整的无水印仿真结果。LDPC是一种逼近香农限的信道编码技术,广泛应用于现代通信系统。BP译码算法通过Tanner图上的消息传递实现高效译码。仿真程序涵盖了不同Eb/N0下的误码率计算,并分析了码长、码率、迭代次数和信道类型对译码性能的影响。核心代码实现了LDPC编码、BPSK调制、高斯信道传输及BP译码过程,最终绘制误码率曲线并保存数据。 字符数:239
18 5
|
7天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
6天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
18小时前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
1天前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
20天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
26天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。

热门文章

最新文章