基于NIQE算法的图像无参考质量评价算法matlab仿真

简介: 基于NIQE算法的图像无参考质量评价算法matlab仿真

1.算法运行效果图预览

2f89a6ee01e55fe09b75eacdc56cb87d_82780907_202402132215190139397978_Expires=1707834319&Signature=BsOrncqyJfgvanWi%2FQm85%2Fp2stA%3D&domain=8.jpeg
7484e62d905ce94c654037fafc110858_82780907_202402132215190201151849_Expires=1707834319&Signature=Ud4Wt8IzfpOm9Tlc4uFHUn8z6GY%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
NIQE(Naturalness Image Quality Evaluator)算法是一种无参考图像质量评价算法,旨在评估图像的自然度,即图像看起来是否像自然场景。 NIQE基于一组“质量感知”特征,并将其拟合到MVG模型中。质量感知特征源于一个简单但高度正则化的NSS模型。然后,将给定的测试图像的NIQE指标表示为从测试图像中提取的NSS特征的MVG模型与从自然图像语料中提取的质量感知特征的MVG模型之间的距离。整个过程由五步操作完成:

3.1 空域NSS特征提取

6e2454b95ee8787f34ccc5bb2f7ee04d_82780907_202402132214020794204708_Expires=1707834242&Signature=NKjovcOYcL5Z5Ho1QWIiPmcalrA%3D&domain=8.png

3.2 图像块选取

   一旦图像的系数由(1)式计算出,整张图像会被分割成P × P P\times{P}P×P的块。然后从每个块的系数中计算出特殊的NSS特征。方差(3)在之前的基于NSS的图片分析中常常被忽视。但是它在结构化图片信息上有丰富的内容。这些内容可以被用来量化局部图片的锐利度。(从美学上认为一幅图片越锐利它的成像效果会越好,平滑模糊代表一种视觉信息的潜在损失。)将P × P P\times{P}P×P的图像块用b = 1 , 2 , . . . , B b=1,2,...,Bb=1,2,...,B做标记,再用一种直接的方法计算每一块b bb平均局部偏移范围:

e805bb5323492523bae518375d852df5_82780907_202402132213520451300576_Expires=1707834232&Signature=ZYKh%2Fyv4p6r5bwdelVi8j%2ByD6b8%3D&domain=8.png

3.3 MVG模型
通过将自然图像块与MVG模型密度函数拟合,可以得到一个简单的NSS特征模型,MVG模型密度函数为:

983685b1cf6dde719a67741a829b279f_82780907_202402132212380668437017_Expires=1707834158&Signature=pwM%2BiMux54vdfNIN8OVkleBAarg%3D&domain=8.png

3.4 NIQE指标
NIQE分数的计算,是通过计算待测图片MVG模型参数和上面得到的自然图片MVG模型参数的距离来得到(如下式)。不过选择patch的准则(1)不应用到待测图片上,而只用在上面自然图片模型参数估计上。原因如下:

af2b16536018b28dc0505f731eeffeb4_82780907_202402132212270933848764_Expires=1707834147&Signature=agwkykmHoIneDdjzPDMjw9FVtsc%3D&domain=8.png

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')

Rbk     = 48;
Cbk     = 48;
Rlap    = 0;
Clap    = 0;
%加入不同的噪声,估计图像质量
im1     = imread('1.bmp');
quality1= func_quality(im1,Rbk,Cbk,Rlap,Clap);

im2     = imnoise(im1,'salt & pepper',0.001); %加入不同的噪声,估计图像质量
quality2= func_quality(im2,Rbk,Cbk,Rlap,Clap);


im3     = imnoise(im1,'salt & pepper',0.01); %加入不同的噪声,估计图像质量
quality3= func_quality(im3,Rbk,Cbk,Rlap,Clap);

im4     = imnoise(im1,'salt & pepper',0.05); %加入不同的噪声,估计图像质量
quality4= func_quality(im4,Rbk,Cbk,Rlap,Clap);

im5     = imnoise(im1,'salt & pepper',0.1); %加入不同的噪声,估计图像质量
quality5= func_quality(im5,Rbk,Cbk,Rlap,Clap);

im6     = imnoise(im1,'salt & pepper',0.25); %加入不同的噪声,估计图像质量
quality6= func_quality(im6,Rbk,Cbk,Rlap,Clap);


figure;
subplot(231);
imshow(im1);
title(['质量估计值:',num2str(100/quality1)]);

subplot(232);
imshow(im2);
title(['质量估计值:',num2str(100/quality2)]);

subplot(233);
imshow(im3);
title(['质量估计值:',num2str(100/quality3)]);

subplot(234);
imshow(im4);
title(['质量估计值:',num2str(100/quality4)]);

subplot(235);
imshow(im5);
title(['质量估计值:',num2str(100/quality5)]);

subplot(236);
imshow(im6);
title(['质量估计值:',num2str(100/quality6)]);
相关文章
|
2天前
|
机器学习/深度学习 人工智能 算法
基于DCT和扩频的音频水印嵌入提取算法matlab仿真
本文介绍了结合DCT和扩频技术的音频水印算法,用于在不降低音质的情况下嵌入版权信息。在matlab2022a中实现,算法利用DCT进行频域处理,通过扩频增强水印的隐蔽性和抗攻击性。核心程序展示了水印的嵌入与提取过程,包括DCT变换、水印扩频及反变换步骤。该方法有效且专业,未来研究将侧重于提高实用性和安全性。
|
6天前
|
文字识别 算法 计算机视觉
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
图像倾斜校正算法的MATLAB实现:图像倾斜角检测及校正
13 0
|
9天前
|
机器学习/深度学习 算法
【MATLAB】GA_ELM神经网络时序预测算法
【MATLAB】GA_ELM神经网络时序预测算法
280 9
|
11天前
|
机器学习/深度学习 自然语言处理 算法
|
21天前
雷达模糊函数及MATLAB仿真(三)
雷达模糊函数及MATLAB仿真
15 0
|
21天前
雷达模糊函数及MATLAB仿真(一)
雷达模糊函数及MATLAB仿真
25 0
|
21天前
雷达检测及MATLAB仿真(三)
雷达检测及MATLAB仿真
21 0
|
21天前
OFDM深入学习及MATLAB仿真(二)
OFDM深入学习及MATLAB仿真
21 1
|
21天前
|
机器学习/深度学习
信道编码译码及MATLAB仿真(三)
信道编码译码及MATLAB仿真
27 3
|
21天前
|
算法
信道编码译码及MATLAB仿真(二)
信道编码译码及MATLAB仿真
25 3

热门文章

最新文章