搜索推荐DeepFM算法详解:算法原理、代码实现、比赛实战

简介: 搜索推荐DeepFM算法详解:算法原理、代码实现、比赛实战

搜索推荐DeepFM算法详解:算法原理、代码实现、比赛实战

可以说,DeepFM 是目前最受欢迎的 CTR 预估模型之一,不仅是在交流群中被大家提及最多的,同时也是在面试中最多被提及的:

1、Deepfm 的原理,DeepFM 是一个模型还是代表了一类模型,DeepFM 对 FM 做了什么样的改进,FM 的公式如何化简并求解梯度(滴滴) 2、FM、DeepFM 介绍一下(猫眼) 3、DeepFm 模型介绍一下(一点资讯) 4、DeepFM 介绍下 & FM 推导(一点资讯)

这次咱们一起来回顾一下 DeepFM 模型,以及手把手来实现一波!

1、DeepFM 原理回顾

先来回顾一下 DeepFM 的模型结构:

DeepFM 包含两部分:因子分解机部分与神经网络部分,分别负责低阶特征的提取和高阶特征的提取。这两部分共享同样的嵌入层输入。DeepFM 的预测结果可以写为:

$$\hat{y}=\operatorname{sigmoid}\left(y_{F M}+y_{D N N}\right)$$

1.1 嵌入层

嵌入层 (embedding layer) 的结构如上图所示。通过嵌入层,尽管不同 field 的长度不同(不同离散变量的取值个数可能不同),但是 embedding 之后向量的长度均为 K(我们提前设定好的 embedding-size)。通过代码可以发现,在得到 embedding 之后,我们还将对应的特征值乘到了 embedding 上,这主要是由于 fm 部分和 dnn 部分共享嵌入层作为输入,而 fm 中的二次项如下:

$$\sum_{j_1=1}^d \sum_{j_2=j_1+1}^d\left\langle V_i, V_j\right\rangle x_{j_1} \cdot x_{j_2}$$

1.2 FM 部分

FM 部分的详细结构如下:

FM 部分是一个因子分解机。关于因子分解机可以参阅文章 [Rendle, 2010] Steffen Rendle. Factorization machines. In ICDM, 2010.。因为引入了隐变量的原因,对于几乎不出现或者很少出现的隐变量,FM 也可以很好的学习。

FM 的输出公式为:

$$y_{F M}=\langle w, x\rangle+\sum_{j_1=1}^d \sum_{j_2=j_1+1}^d\left\langle V_i, V_j\right\rangle x_{j_1} \cdot x_{j_2}$$

1.3 深度部分

深度部分是一个多层前馈神经网络。我们这里不再赘述。

1.4 与其他神经网络的关系

1.5 模型效果

2、代码实现

2.1 Embedding 介绍

DeepFM 中,很重要的一项就是 embedding 操作,所以我们先来看看什么是 embedding,可以简单的理解为,将一个特征转换为一个向量。在推荐系统当中,我们经常会遇到离散变量,如 userid、itemid。对于离散变量,我们一般的做法是将其转换为 one-hot,但对于 itemid 这种离散变量,转换成 one-hot 之后维度非常高,但里面只有一个是 1,其余都为 0。这种情况下,我们的通常做法就是将其转换为 embedding。

embedding 的过程是什么样子的呢?它其实就是一层全连接的神经网络,如下图所示:

假设一个离散变量共有 5 个取值,也就是说 one-hot 之后会变成 5 维,我们想将其转换为 embedding 表示,其实就是接入了一层全连接神经网络。由于只有一个位置是 1,其余位置是 0,因此得到的 embedding 就是与其相连的图中红线上的权重。

2.2 tf.nn.embedding_lookup 函数介绍

在 tf1.x 中,我们使用 embedding_lookup 函数来实现 embedding,代码如下:

#embedding
embedding = tf.constant(
        [[0.21,0.41,0.51,0.11]],
        [0.22,0.42,0.52,0.12],
        [0.23,0.43,0.53,0.13],
        [0.24,0.44,0.54,0.14]],dtype=tf.float32)

feature_batch = tf.constant([2,3,1,0])

get_embedding1 = tf.nn.embedding_lookup(embedding,feature_batch)

在 embedding_lookup 中,第一个参数相当于一个二维的词表,并根据第二个参数中指定的索引,去词表中寻找并返回对应的行。上面的过程为:

注意这里的维度的变化,假设我们的 feature_batch 是 1 维的 tensor,长度为 4,而 embedding 的长度为 4,那么得到的结果是 4 4 的,同理,假设 feature_batch 是 2 4 的,embedding_lookup 后的结果是 2 4 4。每一个索引返回 embedding table 中的一行,自然维度会 + 1。

上文说过,embedding 层其实是一个全连接神经网络层,那么其过程等价于:

可以得到下面的代码:

embedding = tf.constant(
    [
        [0.21,0.41,0.51,0.11],
        [0.22,0.42,0.52,0.12],
        [0.23,0.43,0.53,0.13],
        [0.24,0.44,0.54,0.14]
    ],dtype=tf.float32)

feature_batch = tf.constant([2,3,1,0])
feature_batch_one_hot = tf.one_hot(feature_batch,depth=4)
get_embedding2 = tf.matmul(feature_batch_one_hot,embedding)

二者是否一致呢?我们通过代码来验证一下:

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    embedding1,embedding2 = sess.run([get_embedding1,get_embedding2])
    print(embedding1)
    print(embedding2)

得到的结果为:

二者得到的结果是一致的。

因此,使用 embedding_lookup 的话,我们不需要将数据转换为 one-hot 形式,只需要传入对应的 feature 的 index 即可。

2.3 数据处理

接下来进入代码实战部分。

首先我们来看看数据处理部分,通过刚才的讲解,想要给每一个特征对应一个 k 维的 embedding,如果我们使用 embedding_lookup 的话,需要得到连续变量或者离散变量对应的特征索引 feature index。听起来好像有点抽象,咱们还是举个简单的例子:

这里有三组特征,或者说 3 个 field 的特征,分别是性别、星期几、职业。对应的特征数量分别为 2、7、2。我们总的特征数量 feature-size 为 2 + 7 + 2=11。如果转换为 one-hot 的话,每一个取值都会对应一个特征索引 feature-index。

这样,对于一个实例男/二/学生来说,将其转换为对应的特征索引即为 0、3、9。在得到特征索引之后,就可以通过 embedding_lookup 来获取对应特征的 embedding。

当然,上面的例子中我们只展示了三个离散变量,对于连续变量,我们也会给它一个对应的特征索引,如:

可以看到,此时共有 5 个 field,一个连续特征就对应一个 field。

但是在 FM 的公式中,不光是 embedding 的内积,特征取值也同样需要。对于离散变量来说,特征取值就是 1,对于连续变量来说,特征取值是其本身,因此,我们想要得到的数据格式如下:

定好了目标之后,咱们就开始实现代码。先看下对应的数据集:

import pandas as pd

TRAIN_FILE = "data/train.csv"
TEST_FILE = "data/test.csv"

NUMERIC_COLS = [
    "ps_reg_01", "ps_reg_02", "ps_reg_03",
    "ps_car_12", "ps_car_13", "ps_car_14", "ps_car_15"
]

IGNORE_COLS = [
    "id", "target",
    "ps_calc_01", "ps_calc_02", "ps_calc_03", "ps_calc_04",
    "ps_calc_05", "ps_calc_06", "ps_calc_07", "ps_calc_08",
    "ps_calc_09", "ps_calc_10", "ps_calc_11", "ps_calc_12",
    "ps_calc_13", "ps_calc_14",
    "ps_calc_15_bin", "ps_calc_16_bin", "ps_calc_17_bin",
    "ps_calc_18_bin", "ps_calc_19_bin", "ps_calc_20_bin"
]

dfTrain = pd.read_csv(TRAIN_FILE)
dfTest = pd.read_csv(TEST_FILE)
print(dfTrain.head(10))

数据集如下:

我们定义了一些不考虑的变量列、一些连续变量列,剩下的就是离散变量列,接下来,想要得到一个 feature-map。这个 featrue-map 定义了如何将变量的不同取值转换为其对应的特征索引 feature-index。

df = pd.concat([dfTrain,dfTest])

feature_dict = {}
total_feature = 0
for col in df.columns:
    if col in IGNORE_COLS:
        continue
    elif col in NUMERIC_COLS:
        feature_dict[col] = total_feature
        total_feature += 1
    else:
        unique_val = df[col].unique()
        feature_dict[col] = dict(zip(unique_val,range(total_feature,len(unique_val) + total_feature)))
        total_feature += len(unique_val)
print(total_feature)
print(feature_dict)

这里,我们定义了 total_feature 来得到总的特征数量,定义了 feature_dict 来得到变量取值到特征索引的对应关系,结果如下:

可以看到,对于连续变量,直接是变量名到索引的映射,对于离散变量,内部会嵌套一个二级 map,这个二级 map 定义了该离散变量的不同取值到索引的映射。

下一步,需要将训练集和测试集转换为两个新的数组,分别是 feature-index,将每一条数据转换为对应的特征索引,以及 feature-value,将每一条数据转换为对应的特征值。

"""
对训练集进行转化
"""
print(dfTrain.columns)
train_y = dfTrain[['target']].values.tolist()
dfTrain.drop(['target','id'],axis=1,inplace=True)
train_feature_index = dfTrain.copy()
train_feature_value = dfTrain.copy()

for col in train_feature_index.columns:
    if col in IGNORE_COLS:
        train_feature_index.drop(col,axis=1,inplace=True)
        train_feature_value.drop(col,axis=1,inplace=True)
        continue
    elif col in NUMERIC_COLS:
        train_feature_index[col] = feature_dict[col]
    else:
        train_feature_index[col] = train_feature_index[col].map(feature_dict[col])
        train_feature_value[col] = 1


"""
对测试集进行转化
"""
test_ids = dfTest['id'].values.tolist()
dfTest.drop(['id'],axis=1,inplace=True)

test_feature_index = dfTest.copy()
test_feature_value = dfTest.copy()

for col in test_feature_index.columns:
    if col in IGNORE_COLS:
        test_feature_index.drop(col,axis=1,inplace=True)
        test_feature_value.drop(col,axis=1,inplace=True)
        continue
    elif col in NUMERIC_COLS:
        test_feature_index[col] = feature_dict[col]
    else:
        test_feature_index[col] = test_feature_index[col].map(feature_dict[col])
        test_feature_value[col] = 1

来看看此时的训练集的特征索引:

对应的特征值:

此时,我们的训练集和测试集就处理完毕了!

2.4 模型参数及输入

接下来定义模型的一些参数,如学习率、embedding 的大小、深度网络的参数、激活函数等等,还有两个比较重要的参数,分别是 feature 的大小和 field 的大小:

"""模型参数"""
dfm_params = {
    "use_fm":True,
    "use_deep":True,
    "embedding_size":8,
    "dropout_fm":[1.0,1.0],
    "deep_layers":[32,32],
    "dropout_deep":[0.5,0.5,0.5],
    "deep_layer_activation":tf.nn.relu,
    "epoch":30,
    "batch_size":1024,
    "learning_rate":0.001,
    "optimizer":"adam",
    "batch_norm":1,
    "batch_norm_decay":0.995,
    "l2_reg":0.01,
    "verbose":True,
    "eval_metric":'gini_norm',
    "random_seed":3
}
dfm_params['feature_size'] = total_feature
dfm_params['field_size'] = len(train_feature_index.columns)

而训练模型的输入有三个,分别是刚才转换得到的特征索引和特征值,以及 label:

"""开始建立模型"""
feat_index = tf.placeholder(tf.int32,shape=[None,None],name='feat_index')
feat_value = tf.placeholder(tf.float32,shape=[None,None],name='feat_value')

label = tf.placeholder(tf.float32,shape=[None,1],name='label')

比如刚才的两个数据,对应的输入为:

定义好输入之后,再定义一下模型中所需要的 weights:

"""建立weights"""
weights = dict()

#embeddings
weights['feature_embeddings'] = tf.Variable(
    tf.random_normal([dfm_params['feature_size'],dfm_params['embedding_size']],0.0,0.01),
    name='feature_embeddings')
weights['feature_bias'] = tf.Variable(tf.random_normal([dfm_params['feature_size'],1],0.0,1.0),name='feature_bias')


#deep layers
num_layer = len(dfm_params['deep_layers'])
input_size = dfm_params['field_size'] * dfm_params['embedding_size']
glorot = np.sqrt(2.0/(input_size + dfm_params['deep_layers'][0]))

weights['layer_0'] = tf.Variable(
    np.random.normal(loc=0,scale=glorot,size=(input_size,dfm_params['deep_layers'][0])),dtype=np.float32
)
weights['bias_0'] = tf.Variable(
    np.random.normal(loc=0,scale=glorot,size=(1,dfm_params['deep_layers'][0])),dtype=np.float32
)


for i in range(1,num_layer):
    glorot = np.sqrt(2.0 / (dfm_params['deep_layers'][i - 1] + dfm_params['deep_layers'][I]))
    weights["layer_%d" % i] = tf.Variable(
        np.random.normal(loc=0, scale=glorot, size=(dfm_params['deep_layers'][i - 1], dfm_params['deep_layers'][i])),
        dtype=np.float32)  # layers[i-1] * layers[I]
    weights["bias_%d" % i] = tf.Variable(
        np.random.normal(loc=0, scale=glorot, size=(1, dfm_params['deep_layers'][i])),
        dtype=np.float32)  # 1 * layer[I]


#final concat projection layer

if dfm_params['use_fm'] and dfm_params['use_deep']:
    input_size = dfm_params['field_size'] + dfm_params['embedding_size'] + dfm_params['deep_layers'][-1]
elif dfm_params['use_fm']:
    input_size = dfm_params['field_size'] + dfm_params['embedding_size']
elif dfm_params['use_deep']:
    input_size = dfm_params['deep_layers'][-1]

glorot = np.sqrt(2.0/(input_size + 1))
weights['concat_projection'] = tf.Variable(np.random.normal(loc=0,scale=glorot,size=(input_size,1)),dtype=np.float32)
weights['concat_bias'] = tf.Variable(tf.constant(0.01),dtype=np.float32)

介绍两个比较重要的参数,weights['feature_embeddings'] 是每个特征所对应的 embedding,它的大小为 feature-size embedding-size,另一个参数是 weights['feature_bias'] ,这个是 FM 部分计算时所用到的一次项的权重参数,可以理解为 embedding-size 为 1 的 embedding table,它的大小为 feature-size 1。

假设 weights['feature_embeddings'] 如下:

2.5 嵌入层

嵌入层,主要根据特征索引得到对应特征的 embedding:

"""embedding"""
embeddings = tf.nn.embedding_lookup(weights['feature_embeddings'],feat_index)

reshaped_feat_value = tf.reshape(feat_value,shape=[-1,dfm_params['field_size'],1])

embeddings = tf.multiply(embeddings,reshaped_feat_value)

这里注意的是,在得到对应的 embedding 之后,还乘上了对应的特征值,这个主要是根据 FM 的公式得到的。过程表示如下:

2.6 FM 部分

我们先来回顾一下 FM 的公式,以及二次项的化简过程:

$$y_{F M}=\langle w, x\rangle+\sum_{j_1=1}^d \sum_{j_2=j_1+1}^d\left\langle V_i, V_j\right\rangle x_{j_1} \cdot x_{j_2}$$

上面的式子中有部分同学曾经问我第一步是怎么推导的,其实也不难,看下面的手写过程

因此,一次项的计算如下,我们刚刚也说过了,通过 weights['feature_bias'] 来得到一次项的权重系数:

fm_first_order = tf.nn.embedding_lookup(weights['feature_embeddings'],feat_index)
fm_first_order = tf.reduce_sum(tf.multiply(fm_first_order,reshaped_feat_value),2)

对于二次项,经过化简之后有两部分(暂不考虑最外层的求和),我们先用 excel 来形象展示一下两部分,这有助于你对下面代码的理解。

第一部分过程如下:

第二部分的过程如下:

最后两部分相减:

二次项部分的代码如下:

summed_features_emb = tf.reduce_sum(embeddings,1)
summed_features_emb_square = tf.square(summed_features_emb)

squared_features_emb = tf.square(embeddings)
squared_sum_features_emb = tf.reduce_sum(squared_features_emb,1)

fm_second_order = 0.5 * tf.subtract(summed_features_emb_square,squared_sum_features_emb)

要注意这里的 fm_second_order 是二维的 tensor,大小为 batch-size * embedding-size,也就是公式中最外层的一个求和还没有进行,这也是代码中与 FM 公式有所出入的地方。我们后面再讲。

2.7 Deep 部分

Deep 部分很简单了,就是几层全连接的神经网络:

"""deep part"""
y_deep = tf.reshape(embeddings,shape=[-1,dfm_params['field_size'] * dfm_params['embedding_size']])

for i in range(0,len(dfm_params['deep_layers'])):
    y_deep = tf.add(tf.matmul(y_deep,weights["layer_%d" %i]), weights["bias_%d"%I])
    y_deep = tf.nn.relu(y_deep)

2.8 输出部分

最后的输出部分,论文中的公式如下:

$$\hat{y}=\operatorname{sigmoid}\left(y_{F M}+y_{D N N}\right)$$

在我们的代码中如下:

"""final layer"""
if dfm_params['use_fm'] and dfm_params['use_deep']:
    concat_input = tf.concat([fm_first_order,fm_second_order,y_deep],axis=1)
elif dfm_params['use_fm']:
    concat_input = tf.concat([fm_first_order,fm_second_order],axis=1)
elif dfm_params['use_deep']:
    concat_input = y_deep

out = tf.nn.sigmoid(tf.add(tf.matmul(concat_input,weights['concat_projection']),weights['concat_bias']))

看似有点出入,其实真的有点出入,不过无碍,咱们做两点说明:

1)首先,这里整体上和最终的公式是相似的,看下面的 excel(由于最后一层只有一个神经元,矩阵相乘可以用对位相乘再求和代替):

2)这里不同的地方就是,FM 二次项化简之后最外层不再是简单的相加了,而是变成了加权求和(有点类似 attention 的意思),如果 FM 二次项部分对应的权重都是 1,就是标准的 FM 了。

2.9 Loss and Optimizer

这一块也不再多讲,我们使用 logloss 来指导模型的训练:

"""loss and optimizer"""
loss = tf.losses.log_loss(tf.reshape(label,(-1,1)), out)
optimizer = tf.train.AdamOptimizer(learning_rate=dfm_params['learning_rate'], beta1=0.9, beta2=0.999,
                                                        epsilon=1e-8).minimize(loss)

至此,我们整个 DeepFM 模型的架构就搭起来了,接下来,我们简单测试一下代码:

"""train"""
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(100):
        epoch_loss,_ = sess.run([loss,optimizer],feed_dict={feat_index:train_feature_index,
                             feat_value:train_feature_value,
                             label:train_y})
        print("epoch %s,loss is %s" % (str(i),str(epoch_loss)))

3.实战案例参考

搜索推荐算法挑战赛OGeek-完整方案及代码(亚军):https://cloud.tencent.com/developer/article/1479464

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

  • 参考链接

https://arxiv.org/pdf/1703.04247v1.pdf

http://www.360doc.com/content/21/0720/21/99071_987495812.shtml

https://blog.csdn.net/hero_myself/article/details/117522304

https://cloud.tencent.com/developer/article/1479464

相关文章
|
3天前
|
算法
代码随想录算法训练营第六十天 | LeetCode 84. 柱状图中最大的矩形
代码随想录算法训练营第六十天 | LeetCode 84. 柱状图中最大的矩形
16 3
|
3天前
|
算法
代码随想录算法训练营第五十七天 | LeetCode 739. 每日温度、496. 下一个更大元素 I
代码随想录算法训练营第五十七天 | LeetCode 739. 每日温度、496. 下一个更大元素 I
9 3
|
3天前
|
算法
代码随想录算法训练营第五十六天 | LeetCode 647. 回文子串、516. 最长回文子序列、动态规划总结
代码随想录算法训练营第五十六天 | LeetCode 647. 回文子串、516. 最长回文子序列、动态规划总结
22 1
|
11天前
|
机器学习/深度学习 自然语言处理 算法
|
13天前
|
算法 安全 Java
java代码 实现AES_CMAC 算法测试
该代码实现了一个AES-CMAC算法的简单测试,使用Bouncy Castle作为安全提供者。静态变量K定义了固定密钥。`Aes_Cmac`函数接受密钥和消息,返回AES-CMAC生成的MAC值。在`main`方法中,程序对给定的消息进行AES-CMAC加密,然后模拟接收ECU的加密结果并进行比较。如果两者匹配,输出"验证成功",否则输出"验证失败"。辅助方法包括将字节转为16进制字符串和将16进制字符串转为字节。
|
19天前
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
|
19天前
|
存储 算法 编译器
【数据结构】栈算法(算法原理+源码)
【数据结构】栈算法(算法原理+源码)
【数据结构】栈算法(算法原理+源码)
|
24天前
|
机器学习/深度学习 存储 算法
神经网络分类算法原理详解
神经网络分类算法原理详解
45 0
|
24天前
|
缓存 算法 关系型数据库
深度思考:雪花算法snowflake分布式id生成原理详解
雪花算法snowflake是一种优秀的分布式ID生成方案,其优点突出:它能生成全局唯一且递增的ID,确保了数据的一致性和准确性;同时,该算法灵活性强,可自定义各部分bit位,满足不同业务场景的需求;此外,雪花算法生成ID的速度快,效率高,能有效应对高并发场景,是分布式系统中不可或缺的组件。
深度思考:雪花算法snowflake分布式id生成原理详解
|
24天前
|
存储 算法 Java
金石推荐 | 【算法数据结构专题】「延时队列算法」史上手把手教你针对层级时间轮(TimingWheel)实现延时队列的开发实战落地(下)(一)
金石推荐 | 【算法数据结构专题】「延时队列算法」史上手把手教你针对层级时间轮(TimingWheel)实现延时队列的开发实战落地(下)
29 1