【视频】K近邻KNN算法原理与R语言结合新冠疫情对股票价格预测|数据分享(上):https://developer.aliyun.com/article/1491727
4.3数据集预览
最终数据集可以在下面的交互式表格中找到。
table(before_covid)
4.4变量汇总
变量 | 描述 |
Open | 当日股票开盘价 |
High | 当日股票最高价 |
Low | 当日股价最低 |
Close | 当日股票收盘价 |
Volumn | 总交易量 |
Adjusted | 调整后的股票价格,包括风险或策略 |
5. ARIMA模型
我们首先分析两个数据集的ACF和PACF图。
par(mfrow = c(2,2))
acft(bfoe_covid)
pacf(bfre_covid)
然后,我们进行 ADF(Dickey-Fuller) 检验和 KPSS(Kwiatkowski-Phillips-Schmidt-Shin) 检验,检验两个数据集收盘价的时间序列数据的平稳性。
print(adf.test)
print(adfes(sata\_after\_covid))
通过以上ADF检验,我们可以得出以下结论:
- 对于COVID-19之前的数据集,ADF测试给出的p值为 0.2093,该值大于0.05,因此说明时间序列数据 不是平稳的。
- 对于COVID-19之后的数据集,ADF测试给出的p值为0.01974,该值 小于0.05,这说明时间序列数据是 平稳的。
print(kpss.s(t\_before\_covid))
print(kpss.est(Dafter_covid))
通过以上KPSS测试,我们可以得出以下结论:
- 对于COVID-19之前的数据集,KPSS测试得出的p值为 0.01,该值小于0.05,因此说明时间序列数据 不是平稳的。
- 对于COVID-19之后的数据集,KPSS测试给出的p值为 0.01,该值小于0.05,这说明时间序列数据 不是平稳的。
因此,我们可以从以上两个测试得出结论,时间序列数据 不是平稳的。
然后,我们使用 auto 函数来确定每个数据集的时间序列模型。
auto.ar(befor_covid, lamd = "auto")
auto.arma(after_covid)
从auto函数中,我们得出两个数据集的以下模型:
- 在COVID-19之前:ARIMA(2,1,0)
- 在COVID-19之后:ARIMA(1,1,1)
获得模型后,我们将对每个拟合模型执行残差诊断。
par(mfrow = c(2,3))
plot(before_covidresiduals)
plot(mfter_covidresiduals)
从残差图中,我们可以确认残差的平均值为0,并且方差也为常数。对于滞后> 0,ACF为0,而PACF也为0。
因此,我们可以说残差表现得像白噪声,并得出结论:ARIMA(2,1,0)和ARIMA(1,1,1)模型很好地拟合了数据。或者,我们也可以使用Box-Ljung检验在0.05的显着性水平上进行检验残差是符合白噪声。
Box.test(moderesiduals)
Box.tst(moeit\_fter\_covidreia, type = "Ljung-Box")
在此,两个模型的p值均大于0.05。因此,在显着性水平为0.05的情况下,我们无法拒绝原假设,而得出的结论是残差遵循白噪声。这意味着该模型很好地拟合了数据。
一旦为每个数据集确定了模型,就可以预测未来几天的股票价格。
点击标题查阅往期内容
自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据
01
02
03
04
6. KNN回归时间序列预测模型
KNN模型可用于分类和回归问题。最受欢迎的应用是将其用于分类问题。现在,使用r软件包,可以在任何回归任务应用KNN。这项研究的目的是说明不同的预测工具,对其进行比较并分析预测的行为。在我们的KNN研究之后,我们提出可以将其用于分类和回归问题。为了预测新数据点的值,模型使用“特征相似度”,根据新点与训练集上点的相似程度为值分配新点。
第一项任务是确定我们的KNN模型中的k值。选择k值的一般经验法则是取样本中数据点数的平方根。因此,对于COVID-19之前的数据集,我们取k = 32;对于COVID-19之后的数据集,我们取k = 36。
par(mfrow = c(2,1)) knn\_before\_covid <- kn(bfrvdGO.Clse, k = 32) knn\_after\_covid <- kn(ber_oiGOG.lose ,k = 36) plot(knn\_before\_covid ) plot(knn\_after\_covid )
然后,我们针对预测时间序列评估KNN模型。
before\_cvid <- ll\_ig(pdn\_befr\_vid)
afer\_vd<- rog\_ogn(redkn\_afer\_vd)
7.前馈神经网络建模
我们将尝试实现的下一个模型是带有神经网络的预测模型。在此模型中,我们使用单个隐藏层形式,其中只有一层输入节点将加权输入发送到接收节点的下一层。预测函数将单个隐藏层神经网络模型拟合到时间序列。函数模型方法是将时间序列的滞后值用作输入数据,以达到非线性自回归模型。
第一步是确定神经网络的隐藏层数。尽管没有用于计算隐藏层数的特定方法,但时间序列预测遵循的最常见方法是通过计算使用以下公式:
其中Ns:训练样本数Ni:输入神经元数No:输出神经元数a:1.5 ^ -10
#隐藏层的创建 hn\_before\_covid <- length(before.Close)/(alpha*(lengthGOOG.Close + 61) hn\_after\_covid <- length(after\_covidClose)/(alpha*(lengthafter\_ovdClose+65)) #拟合nn nn(before\_covid$GOOG.Close, size = hn\_beoe_cid, # 使用nnetar进行预测。 forecast(befe_cvid, h 61, I =UE) forecast(aftr_coid, h = 5, I = RE)
plot(nn\_fcst\_afte_cvid)
然后,我们使用以下参数分析神经网络模型的性能:
accuracy
accuracy
8.所有模型的比较
现在,我们使用参数诸如RMSE(均方根误差),MAE(均值绝对误差)和MAPE(均值绝对百分比误差)对所有三个模型进行分析 。
sumary\_le\_efore_oid <- data.frame(RMSE = nuerc(), MAE = uer(), MAPE = numric(), snsAsacrs = FALSE) summ\_tabe\_fter_ovd <- data.fame(RMSE = umeri(), MAE = nmei(), MAPE = numeic()) kable(smary\_abe\_eor_oid )
COVID-19之前的数据模型汇总
模型 | RMSE | MAE | MAPE |
ARIMA | 13.0 | 8.8 | 1.0 |
KNN | 44.0 | 33.7 | 3.1 |
神经网络 | 13.0 | 8.7 | 1.0 |
kable(sumary\_tbl\_aft_ci
fulith = F, fixdtead = T )
COVID-19之后的数据模型汇总
模型 | RMSE | MAE | MAPE |
ARIMA | 16.6 | 10.4 | 1.0 |
KNN | 45.9 | 35.7 | 3.3 |
神经网络 | 14.7 | 9.8 | 1.0 |
因此,从以上模型性能参数的总结中,我们可以看到神经网络模型在两个数据集上的性能均优于ARIMA和KNN模型。因此,我们将使用神经网络模型来预测未来两个月的股价。
9.最终模型:COVID-19之前
现在,我们使用直到2月的数据来预测3月和4月的值,然后将预测价格与实际价格进行比较,以检查是否由于COVID-19可以归因于任何重大影响。
foestdungcvid<- datafame("De "Actua Values" = datatable(foestdungcvid, ilte= 'to')
从表中我们可以看到,3月和4月期间,Google股票的实际价值通常比预测值要高一些。因此,可以说,尽管发生了这种全球性大流行,但Google股票的表现仍然相当不错。
10.最终模型:COVID-19之后
现在,我们使用直到4月的数据预测5月和6月的值,以了解Google的未来股价。
foreataov <- data.frae(dn_reataeimean )
table(foreataov )
从表中可以得出结论,在5月和6月的接下来的几个月中,Google股票的价格将继续上涨并表现良好。