【视频】K近邻KNN算法原理与R语言结合新冠疫情对股票价格预测|数据分享(下)

简介: 【视频】K近邻KNN算法原理与R语言结合新冠疫情对股票价格预测|数据分享

【视频】K近邻KNN算法原理与R语言结合新冠疫情对股票价格预测|数据分享(上):https://developer.aliyun.com/article/1491727


4.3数据集预览


最终数据集可以在下面的交互式表格中找到。

table(before_covid)

4.4变量汇总

变量 描述
Open 当日股票开盘价
High 当日股票最高价
Low 当日股价最低
Close 当日股票收盘价
Volumn 总交易量
Adjusted 调整后的股票价格,包括风险或策略


5. ARIMA模型


我们首先分析两个数据集的ACF和PACF图。

par(mfrow = c(2,2))

acft(bfoe_covid)

pacf(bfre_covid)

然后,我们进行 ADF(Dickey-Fuller) 检验和 KPSS(Kwiatkowski-Phillips-Schmidt-Shin) 检验,检验两个数据集收盘价的时间序列数据的平稳性。

print(adf.test)

print(adfes(sata\_after\_covid))

通过以上ADF检验,我们可以得出以下结论:

  • 对于COVID-19之前的数据集,ADF测试给出的p值为 0.2093,该值大于0.05,因此说明时间序列数据 不是平稳的
  • 对于COVID-19之后的数据集,ADF测试给出的p值为0.01974,该小于0.05,这说明时间序列数据是 平稳的

print(kpss.s(t\_before\_covid))

print(kpss.est(Dafter_covid))

通过以上KPSS测试,我们可以得出以下结论:

  • 对于COVID-19之前的数据集,KPSS测试得出的p值为 0.01,该值小于0.05,因此说明时间序列数据 不是平稳的
  • 对于COVID-19之后的数据集,KPSS测试给出的p值为 0.01,该值小于0.05,这说明时间序列数据 不是平稳的

因此,我们可以从以上两个测试得出结论,时间序列数据 不是平稳的

然后,我们使用 auto 函数来确定每个数据集的时间序列模型。

auto.ar(befor_covid, lamd = "auto")

auto.arma(after_covid)

从auto函数中,我们得出两个数据集的以下模型:

  • 在COVID-19之前:ARIMA(2,1,0)
  • 在COVID-19之后:ARIMA(1,1,1)

获得模型后,我们将对每个拟合模型执行残差诊断。

par(mfrow = c(2,3))


plot(before_covidresiduals)



plot(mfter_covidresiduals)

从残差图中,我们可以确认残差的平均值为0,并且方差也为常数。对于滞后> 0,ACF为0,而PACF也为0。

因此,我们可以说残差表现得像白噪声,并得出结论:ARIMA(2,1,0)和ARIMA(1,1,1)模型很好地拟合了数据。或者,我们也可以使用Box-Ljung检验在0.05的显着性水平上进行检验残差是符合白噪声。

Box.test(moderesiduals)

Box.tst(moeit\_fter\_covidreia, type = "Ljung-Box")

在此,两个模型的p值均大于0.05。因此,在显着性水平为0.05的情况下,我们无法拒绝原假设,而得出的结论是残差遵循白噪声。这意味着该模型很好地拟合了数据。

一旦为每个数据集确定了模型,就可以预测未来几天的股票价格。

点击标题查阅往期内容


自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据


01

02

03

04


6. KNN回归时间序列预测模型


KNN模型可用于分类和回归问题。最受欢迎的应用是将其用于分类问题。现在,使用r软件包,可以在任何回归任务应用KNN。这项研究的目的是说明不同的预测工具,对其进行比较并分析预测的行为。在我们的KNN研究之后,我们提出可以将其用于分类和回归问题。为了预测新数据点的值,模型使用“特征相似度”,根据新点与训练集上点的相似程度为值分配新点。

第一项任务是确定我们的KNN模型中的k值。选择k值的一般经验法则是取样本中数据点数的平方根。因此,对于COVID-19之前的数据集,我们取k = 32;对于COVID-19之后的数据集,我们取k = 36。

par(mfrow = c(2,1))
knn\_before\_covid <- kn(bfrvdGO.Clse,  k = 32)
knn\_after\_covid <- kn(ber_oiGOG.lose ,k = 36)
plot(knn\_before\_covid )
plot(knn\_after\_covid )

然后,我们针对预测时间序列评估KNN模型。

before\_cvid <- ll\_ig(pdn\_befr\_vid)

afer\_vd<- rog\_ogn(redkn\_afer\_vd)

7.前馈神经网络建模


我们将尝试实现的下一个模型是带有神经网络的预测模型。在此模型中,我们使用单个隐藏层形式,其中只有一层输入节点将加权输入发送到接收节点的下一层。预测函数将单个隐藏层神经网络模型拟合到时间序列。函数模型方法是将时间序列的滞后值用作输入数据,以达到非线性自回归模型。

第一步是确定神经网络的隐藏层数。尽管没有用于计算隐藏层数的特定方法,但时间序列预测遵循的最常见方法是通过计算使用以下公式:

其中Ns:训练样本数Ni:输入神经元数No:输出神经元数a:1.5 ^ -10

#隐藏层的创建
hn\_before\_covid <- length(before.Close)/(alpha*(lengthGOOG.Close + 61)
hn\_after\_covid <- length(after\_covidClose)/(alpha*(lengthafter\_ovdClose+65))
#拟合nn
nn(before\_covid$GOOG.Close, size = hn\_beoe_cid, 
# 使用nnetar进行预测。
 forecast(befe_cvid, h 61, I =UE)
forecast(aftr_coid, h = 5, I = RE)

plot(nn\_fcst\_afte_cvid)

然后,我们使用以下参数分析神经网络模型的性能:

accuracy

accuracy


8.所有模型的比较


现在,我们使用参数诸如RMSE(均方根误差),MAE(均值绝对误差)和MAPE(均值绝对百分比误差)对所有三个模型进行分析 。

sumary\_le\_efore_oid <- data.frame(RMSE = nuerc(), MAE = uer(), 
                            MAPE = numric(), snsAsacrs = FALSE)
summ\_tabe\_fter_ovd <- data.fame(RMSE = umeri(), MAE = nmei(), 
                            MAPE = numeic())
kable(smary\_abe\_eor_oid )

COVID-19之前的数据模型汇总

模型 RMSE MAE MAPE
ARIMA 13.0 8.8 1.0
KNN 44.0 33.7 3.1
神经网络 13.0 8.7 1.0

kable(sumary\_tbl\_aft_ci

fulith = F, fixdtead = T )

COVID-19之后的数据模型汇总

模型 RMSE MAE MAPE
ARIMA 16.6 10.4 1.0
KNN 45.9 35.7 3.3
神经网络 14.7 9.8 1.0

因此,从以上模型性能参数的总结中,我们可以看到神经网络模型在两个数据集上的性能均优于ARIMA和KNN模型。因此,我们将使用神经网络模型来预测未来两个月的股价。


9.最终模型:COVID-19之前


现在,我们使用直到2月的数据来预测3月和4月的值,然后将预测价格与实际价格进行比较,以检查是否由于COVID-19可以归因于任何重大影响。

foestdungcvid<- datafame("De
                                    "Actua Values" = 
datatable(foestdungcvid, ilte= 'to')

从表中我们可以看到,3月和4月期间,Google股票的实际价值通常比预测值要高一些。因此,可以说,尽管发生了这种全球性大流行,但Google股票的表现仍然相当不错。


10.最终模型:COVID-19之后


现在,我们使用直到4月的数据预测5月和6月的值,以了解Google的未来股价。

foreataov <- data.frae(dn_reataeimean )


table(foreataov )

从表中可以得出结论,在5月和6月的接下来的几个月中,Google股票的价格将继续上涨并表现良好。

相关文章
机器学习/深度学习 算法 自动驾驶
101 0
|
18天前
|
机器学习/深度学习 算法 搜索推荐
从零开始构建图注意力网络:GAT算法原理与数值实现详解
本文详细解析了图注意力网络(GAT)的算法原理和实现过程。GAT通过引入注意力机制解决了图卷积网络(GCN)中所有邻居节点贡献相等的局限性,让模型能够自动学习不同邻居的重要性权重。
85 0
从零开始构建图注意力网络:GAT算法原理与数值实现详解
|
26天前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
235 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
29天前
|
传感器 算法 定位技术
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
KF,EKF,IEKF 算法的基本原理并构建推导出四轮前驱自主移动机器人的运动学模型和观测模型(Matlab代码实现)
|
1月前
|
算法
离散粒子群算法(DPSO)的原理与MATLAB实现
离散粒子群算法(DPSO)的原理与MATLAB实现
86 0
|
2月前
|
机器学习/深度学习 人工智能 编解码
AI视觉新突破:多角度理解3D世界的算法原理全解析
多视角条件扩散算法通过多张图片输入生成高质量3D模型,克服了单图建模背面细节缺失的问题。该技术模拟人类多角度观察方式,结合跨视图注意力机制与一致性损失优化,大幅提升几何精度与纹理保真度,成为AI 3D生成的重要突破。
167 0
|
2月前
|
算法 区块链 数据安全/隐私保护
加密算法:深度解析Ed25519原理
在 Solana 开发过程中,我一直对 Ed25519 加密算法 如何生成公钥、签名以及验证签名的机制感到困惑。为了弄清这一点,我查阅了大量相关资料,终于对其流程有了更清晰的理解。在此记录实现过程,方便日后查阅。
149 1
|
3月前
|
消息中间件 存储 缓存
zk基础—1.一致性原理和算法
本文详细介绍了分布式系统的特点、理论及一致性算法。首先分析了分布式系统的五大特点:分布性、对等性、并发性、缺乏全局时钟和故障随时发生。接着探讨了分布式系统理论,包括CAP理论(一致性、可用性、分区容错性)和BASE理论(基本可用、软状态、最终一致性)。文中还深入讲解了两阶段提交(2PC)与三阶段提交(3PC)协议,以及Paxos算法的推导过程和核心思想,强调了其在ZooKeeper中的应用。最后简述了ZAB算法,指出其通过改编的两阶段提交协议确保节点间数据一致性,并在Leader故障时快速恢复服务。这些内容为理解分布式系统的设计与实现提供了全面的基础。
|
3月前
|
存储 算法 安全
Java中的对称加密算法的原理与实现
本文详细解析了Java中三种常用对称加密算法(AES、DES、3DES)的实现原理及应用。对称加密使用相同密钥进行加解密,适合数据安全传输与存储。AES作为现代标准,支持128/192/256位密钥,安全性高;DES采用56位密钥,现已不够安全;3DES通过三重加密增强安全性,但性能较低。文章提供了各算法的具体Java代码示例,便于快速上手实现加密解密操作,帮助用户根据需求选择合适的加密方案保护数据安全。
336 58

热门文章

最新文章