【视频】K近邻KNN算法原理与R语言结合新冠疫情对股票价格预测|数据分享(下)

简介: 【视频】K近邻KNN算法原理与R语言结合新冠疫情对股票价格预测|数据分享

【视频】K近邻KNN算法原理与R语言结合新冠疫情对股票价格预测|数据分享(上):https://developer.aliyun.com/article/1491727


4.3数据集预览


最终数据集可以在下面的交互式表格中找到。

table(before_covid)

4.4变量汇总

变量 描述
Open 当日股票开盘价
High 当日股票最高价
Low 当日股价最低
Close 当日股票收盘价
Volumn 总交易量
Adjusted 调整后的股票价格,包括风险或策略


5. ARIMA模型


我们首先分析两个数据集的ACF和PACF图。

par(mfrow = c(2,2))

acft(bfoe_covid)

pacf(bfre_covid)

然后,我们进行 ADF(Dickey-Fuller) 检验和 KPSS(Kwiatkowski-Phillips-Schmidt-Shin) 检验,检验两个数据集收盘价的时间序列数据的平稳性。

print(adf.test)

print(adfes(sata\_after\_covid))

通过以上ADF检验,我们可以得出以下结论:

  • 对于COVID-19之前的数据集,ADF测试给出的p值为 0.2093,该值大于0.05,因此说明时间序列数据 不是平稳的
  • 对于COVID-19之后的数据集,ADF测试给出的p值为0.01974,该小于0.05,这说明时间序列数据是 平稳的

print(kpss.s(t\_before\_covid))

print(kpss.est(Dafter_covid))

通过以上KPSS测试,我们可以得出以下结论:

  • 对于COVID-19之前的数据集,KPSS测试得出的p值为 0.01,该值小于0.05,因此说明时间序列数据 不是平稳的
  • 对于COVID-19之后的数据集,KPSS测试给出的p值为 0.01,该值小于0.05,这说明时间序列数据 不是平稳的

因此,我们可以从以上两个测试得出结论,时间序列数据 不是平稳的

然后,我们使用 auto 函数来确定每个数据集的时间序列模型。

auto.ar(befor_covid, lamd = "auto")

auto.arma(after_covid)

从auto函数中,我们得出两个数据集的以下模型:

  • 在COVID-19之前:ARIMA(2,1,0)
  • 在COVID-19之后:ARIMA(1,1,1)

获得模型后,我们将对每个拟合模型执行残差诊断。

par(mfrow = c(2,3))


plot(before_covidresiduals)



plot(mfter_covidresiduals)

从残差图中,我们可以确认残差的平均值为0,并且方差也为常数。对于滞后> 0,ACF为0,而PACF也为0。

因此,我们可以说残差表现得像白噪声,并得出结论:ARIMA(2,1,0)和ARIMA(1,1,1)模型很好地拟合了数据。或者,我们也可以使用Box-Ljung检验在0.05的显着性水平上进行检验残差是符合白噪声。

Box.test(moderesiduals)

Box.tst(moeit\_fter\_covidreia, type = "Ljung-Box")

在此,两个模型的p值均大于0.05。因此,在显着性水平为0.05的情况下,我们无法拒绝原假设,而得出的结论是残差遵循白噪声。这意味着该模型很好地拟合了数据。

一旦为每个数据集确定了模型,就可以预测未来几天的股票价格。

点击标题查阅往期内容


自然语言处理NLP:主题LDA、情感分析疫情下的新闻文本数据


01

02

03

04


6. KNN回归时间序列预测模型


KNN模型可用于分类和回归问题。最受欢迎的应用是将其用于分类问题。现在,使用r软件包,可以在任何回归任务应用KNN。这项研究的目的是说明不同的预测工具,对其进行比较并分析预测的行为。在我们的KNN研究之后,我们提出可以将其用于分类和回归问题。为了预测新数据点的值,模型使用“特征相似度”,根据新点与训练集上点的相似程度为值分配新点。

第一项任务是确定我们的KNN模型中的k值。选择k值的一般经验法则是取样本中数据点数的平方根。因此,对于COVID-19之前的数据集,我们取k = 32;对于COVID-19之后的数据集,我们取k = 36。

par(mfrow = c(2,1))
knn\_before\_covid <- kn(bfrvdGO.Clse,  k = 32)
knn\_after\_covid <- kn(ber_oiGOG.lose ,k = 36)
plot(knn\_before\_covid )
plot(knn\_after\_covid )

然后,我们针对预测时间序列评估KNN模型。

before\_cvid <- ll\_ig(pdn\_befr\_vid)

afer\_vd<- rog\_ogn(redkn\_afer\_vd)

7.前馈神经网络建模


我们将尝试实现的下一个模型是带有神经网络的预测模型。在此模型中,我们使用单个隐藏层形式,其中只有一层输入节点将加权输入发送到接收节点的下一层。预测函数将单个隐藏层神经网络模型拟合到时间序列。函数模型方法是将时间序列的滞后值用作输入数据,以达到非线性自回归模型。

第一步是确定神经网络的隐藏层数。尽管没有用于计算隐藏层数的特定方法,但时间序列预测遵循的最常见方法是通过计算使用以下公式:

其中Ns:训练样本数Ni:输入神经元数No:输出神经元数a:1.5 ^ -10

#隐藏层的创建
hn\_before\_covid <- length(before.Close)/(alpha*(lengthGOOG.Close + 61)
hn\_after\_covid <- length(after\_covidClose)/(alpha*(lengthafter\_ovdClose+65))
#拟合nn
nn(before\_covid$GOOG.Close, size = hn\_beoe_cid, 
# 使用nnetar进行预测。
 forecast(befe_cvid, h 61, I =UE)
forecast(aftr_coid, h = 5, I = RE)

plot(nn\_fcst\_afte_cvid)

然后,我们使用以下参数分析神经网络模型的性能:

accuracy

accuracy


8.所有模型的比较


现在,我们使用参数诸如RMSE(均方根误差),MAE(均值绝对误差)和MAPE(均值绝对百分比误差)对所有三个模型进行分析 。

sumary\_le\_efore_oid <- data.frame(RMSE = nuerc(), MAE = uer(), 
                            MAPE = numric(), snsAsacrs = FALSE)
summ\_tabe\_fter_ovd <- data.fame(RMSE = umeri(), MAE = nmei(), 
                            MAPE = numeic())
kable(smary\_abe\_eor_oid )

COVID-19之前的数据模型汇总

模型 RMSE MAE MAPE
ARIMA 13.0 8.8 1.0
KNN 44.0 33.7 3.1
神经网络 13.0 8.7 1.0

kable(sumary\_tbl\_aft_ci

fulith = F, fixdtead = T )

COVID-19之后的数据模型汇总

模型 RMSE MAE MAPE
ARIMA 16.6 10.4 1.0
KNN 45.9 35.7 3.3
神经网络 14.7 9.8 1.0

因此,从以上模型性能参数的总结中,我们可以看到神经网络模型在两个数据集上的性能均优于ARIMA和KNN模型。因此,我们将使用神经网络模型来预测未来两个月的股价。


9.最终模型:COVID-19之前


现在,我们使用直到2月的数据来预测3月和4月的值,然后将预测价格与实际价格进行比较,以检查是否由于COVID-19可以归因于任何重大影响。

foestdungcvid<- datafame("De
                                    "Actua Values" = 
datatable(foestdungcvid, ilte= 'to')

从表中我们可以看到,3月和4月期间,Google股票的实际价值通常比预测值要高一些。因此,可以说,尽管发生了这种全球性大流行,但Google股票的表现仍然相当不错。


10.最终模型:COVID-19之后


现在,我们使用直到4月的数据预测5月和6月的值,以了解Google的未来股价。

foreataov <- data.frae(dn_reataeimean )


table(foreataov )

从表中可以得出结论,在5月和6月的接下来的几个月中,Google股票的价格将继续上涨并表现良好。

相关文章
|
数据采集 机器学习/深度学习 数据可视化
R语言从数据到决策:R语言在商业分析中的实践
【9月更文挑战第1天】R语言在商业分析中的应用广泛而深入,从数据收集、预处理、分析到预测模型构建和决策支持,R语言都提供了强大的工具和功能。通过学习和掌握R语言在商业分析中的实践应用,我们可以更好地利用数据驱动企业决策,提升企业的竞争力和盈利能力。未来,随着大数据和人工智能技术的不断发展,R语言在商业分析领域的应用将更加广泛和深入,为企业带来更多的机遇和挑战。
|
存储 数据采集 数据处理
R语言数据变换:使用tidyr包进行高效数据整形的探索
【8月更文挑战第29天】`tidyr`包为R语言的数据整形提供了强大的工具。通过`pivot_longer()`、`pivot_wider()`、`separate()`和`unite()`等函数,我们可以轻松地将数据从一种格式转换为另一种格式,以满足不同的分析需求。掌握这些函数的使用,将大大提高我们处理和分析数据的效率。
R语言基于表格文件的数据绘制具有多个系列的柱状图与直方图
【9月更文挑战第9天】在R语言中,利用`ggplot2`包可绘制多系列柱状图与直方图。首先读取数据文件`data.csv`,加载`ggplot2`包后,使用`ggplot`函数指定轴与填充颜色,并通过`geom_bar`或`geom_histogram`绘图。参数如`stat`, `position`, `alpha`等可根据需要调整,实现不同系列的图表展示。
333 9
|
数据采集 数据可视化 数据挖掘
R语言在金融数据分析中的深度应用:探索数据背后的市场智慧
【9月更文挑战第1天】R语言在金融数据分析中展现出了强大的功能和广泛的应用前景。通过丰富的数据处理函数、强大的统计分析功能和优秀的可视化效果,R语言能够帮助金融机构深入挖掘数据价值,洞察市场动态。未来,随着金融数据的不断积累和技术的不断进步,R语言在金融数据分析中的应用将更加广泛和深入。
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
数据采集 机器学习/深度学习 数据挖掘
R语言数据清洗:高效处理缺失值与重复数据的策略
【8月更文挑战第29天】处理缺失值和重复数据是数据清洗中的基础而重要的步骤。在R语言中,我们拥有多种工具和方法来有效地应对这些问题。通过识别、删除或插补缺失值,以及删除重复数据,我们可以提高数据集的质量和可靠性,为后续的数据分析和建模工作打下坚实的基础。 需要注意的是,处理缺失值和重复数据时,我们应根据实际情况和数据特性选择合适的方法,并在处理过程中保持谨慎,以避免引入新的偏差或错误。
|
数据处理
R语言数据合并:掌握`merge`与`dplyr`中`join`的巧妙技巧
【8月更文挑战第29天】如果你已经在使用`dplyr`进行数据处理,那么推荐使用`dplyr::join`进行数据合并,因为它与`dplyr`的其他函数(如`filter()`、`select()`、`mutate()`等)无缝集成,能够提供更加流畅和一致的数据处理体验。如果你的代码中尚未使用`dplyr`,但想要尝试,那么`dplyr::join`将是一个很好的起点。
|
数据采集 存储 数据可视化
R语言时间序列分析:处理与建模时间序列数据的深度探索
【8月更文挑战第31天】R语言作为一款功能强大的数据分析工具,为处理时间序列数据提供了丰富的函数和包。从数据读取、预处理、建模到可视化,R语言都提供了灵活且强大的解决方案。然而,时间序列数据的处理和分析是一个复杂的过程,需要结合具体的应用场景和需求来选择合适的方法和模型。希望本文能为读者在R语言中进行时间序列分析提供一些有益的参考和启示。
|
9月前
|
数据采集 机器学习/深度学习 数据可视化
探索大数据分析的无限可能:R语言的应用与实践
探索大数据分析的无限可能:R语言的应用与实践
366 9
|
数据可视化 数据挖掘 API
【R语言实战】聚类分析及可视化
【R语言实战】聚类分析及可视化

热门文章

最新文章