基于信号功率谱特征和GRNN广义回归神经网络的信号调制类型识别算法matlab仿真

简介: 基于信号功率谱特征和GRNN广义回归神经网络的信号调制类型识别算法matlab仿真

1.算法运行效果图预览

623818dd25dc636e72381aa7d5d49988_82780907_202401231917100470505525_Expires=1706009230&Signature=iT7uKgt100ph97ve6GDTWF%2F%2BLDw%3D&domain=8.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
本课题,我们主要对MPSK和MFSK调制类型进行识别。在进行信号调制方式区分之前,首先需要对PSK和FSK进行区分,提出了一种基于信号功率谱的PSK和FSK调制方式的识别方法。信号的功率谱计算过程,是一个计算随机过程的统计特性的过程,其中平稳随机过程的功率谱计算过程是一个确定的函数,计算信号的功率谱的过程即功率谱估计。是通过给定的信号样本去估计平稳随机信号的功率谱密度,通过计算信号的功率谱估计可以分析信号的能量随着频率分布的变化情况。

  信号的功率谱计算方法可以分为经典谱估计方法和现代谱估计方法目前应用较为广泛的是经典谱估计算法。经典谱估计方法主要分为直接法和间接法两大类别,本文将通过直接法对调制信号的功率谱进行估计,直接法的主要流程是先计算调制信号的快速傅里叶变换,将调制信号从时域变换到频域,然后将频域结果与其共轭结果相乘,从而得到信号的功率谱估计。

   该算法的整体流程图如下所示

6de5e71575c09764dbf871290094d3b2_82780907_202401231917210079806039_Expires=1706009241&Signature=PrFo498h8Fw%2BkJaykndhImVsZBY%3D&domain=8.png

    GRNN,即General Regression Neural Network,中文全称为广义回归神经网络,是由The Lockheed Palo Alto研究实验室在1991年提出的。GRNN是一种新型的基于非线性回归理论的神经网络模型[43,44]。GRNN是建立在非参数核回归基础之上的,该神经网络是以测试样本为后验条件,并从观测样本中计算得到自变量和因变量之间的概率密度函数,然后在计算出因变量关于自变量的回归值。由于GRNN不需要规定模型的类型,只需要设置神经网络的光滑因子参数,GRNN神经网络的光滑因子参数的取值对神经网络的输出影响较大,当光滑因子参数较大的时候,其对应的神经元所覆盖的输入区域就越大;当光滑因子参数较小的时候,神经网络对应的径向基函数曲线较陡,因此神经网络输出结果更接近期望值,但此时光滑度越差。

   GRNN结构如图所示,整个网络包括输入层、模式层、求和层与输出层。

0248702ff5189a4f8101d2d8236459d9_82780907_202401231917300704627236_Expires=1706009250&Signature=JGHD5cSRvNze7feQde%2BYOOpeMag%3D&domain=8.png

4.部分核心程序

len1 = func_fsk_psk_check(p1);
len2 = func_fsk_psk_check(p2);
len3 = func_fsk_psk_check(p3);
len4 = func_fsk_psk_check(p4);

%根据参数获得FSK和PSK区分参数
Level= (mean([len1,len2]) - mean([len3,len4]))/2;

%分别提取FSK和PSK的不同调制方式的特征参数
char1   = real(func_para_check(y_2FSKn,N0));
char2   = real(func_para_check(y_4FSKn,N0));
char3   = real(func_para_check(y_2PSKn,N0));
char4   = real(func_para_check(y_4PSKn,N0));

%通过GRNN神经网络进行训练
char    = [char1;char2]';
T       = [1;2]';
net_fsk = newgrnn(char,T,1.2);

char    = [char3;char4]';
T       = [1;2]';
net_psk = newgrnn(char,T,1.2); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%加载信号进行测试
%通过大量的循环测试,计算正确率
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
zql  = 0;

%运行的时候,尽量将下面的两个参数指标设置大点,这样结果才精确
MTKL  = 50;
SNRS  = [-10:1:20];
Bers  = zeros(length(SNRS),1);

for jj = 1:length(SNRS)
    for i = 1:MTKL
        [SNRS(jj),i]
        rng(i);
        %长度
        N      = N0;
        %SNR
        SNR    = SNRS(jj);
        %2FSK
        y_2FSK = func_2FSK(N);
        %4FSK
        y_4FSK = func_4FSK(N);
        %BPSK
        y_2PSK = func_2PSK(N);
        %QPSK
        y_4PSK = func_4PSK(N);

        %设置单独的一种调制信号
        tmps   = [2,2,2,2];%4PSK
        if tmps(1) == 1
           datas = y_2FSK;
        end
        if tmps(1) == 2
           datas = y_4FSK;
        end
        if tmps(1) == 3
           datas = y_2PSK;
        end
        if tmps(1) == 4
           datas = y_4PSK;
        end

        datas  = func_multipath(datas);
        data   = func_add_noise(datas,SNR); 


        [p,f] = func_power(data,Ns);
        len   = func_fsk_psk_check(p);


        flag  = 0;
        %首先进行FSK和PSK两种模式的区分
        if len >= Level%为FSK模式
           %根据识别参数进行调制类型的辨识
           char = real(func_para_check(data,length(data)));
           T    = round(sim(net_fsk,char'));
           if T == 1
              flag = 1;
           end
           if T == 2
              flag = 2;
           end
        else%为PSK模式
           %根据识别参数进行调制类型的辨识
           char = real(func_para_check(data,length(data)));
           T    = round(sim(net_psk,char'));
           if T == 1
              flag = 3;
           end
           if T == 2
              flag = 4;
           end
        end
        if flag == tmps(1)
           zql = zql + 1;
        end
    end

    %识别正确率
    Bers(jj) = zql/MTKL;
    zql      = 0;
end


R = 100*mean(Bers,2);
figure;
plot(SNRS,R,'b-o','linewidth',2);
grid on
xlabel('snr');
ylabel('调制识别率');
axis([min(SNRS)-1,max(SNRS)+1,0,110]);

save r1.mat SNRS R
相关文章
|
9天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
1月前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
1月前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
36 2
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。

热门文章

最新文章