基于Python开发的Excel数据分析系统(源码+可执行程序+程序配置说明书+程序使用说明书)

简介: 基于Python开发的Excel数据分析系统(源码+可执行程序+程序配置说明书+程序使用说明书)

一、项目简介

本项目是一套基于Python开发的Excel数据分析系统,主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Python学习者。

包含:项目源码、项目文档等,该项目附带全部源码可作为毕设使用。

项目都经过严格调试,确保可以运行!

二、开发环境要求

本系统的软件开发及运行环境具体如下。

操作系统:Windows 7、Windows 10。

Python版本:Python 3.6。

可视化开发环境:PyCharm 2017.3.3。

界面设计工具:Qt Designer

Python内置模块:os、sys、glob、numpy。

第三方模块:PyQt5、pyqt5-tools、pandas、matplotlib、xlrd。

注意:在使用第三方模块时,首先需要使用pip install命令安装该模块,例如,安装PyQt5模块,可以在Python命令窗口中执行以下命令:

pip install pandas

三、系统功能

导入EXCEL

提取列表数据

定向筛选

多表合并

多表统计排行

生成图表

贡献度分析

退出

四、页面功能

在PyCharm中运行《Excel数据分析师》即可进入如图1所示的系统主界面。在该界面中,通过顶部的工具栏可以选择所要进行的操作

具体的操作步骤如下:

(1)导入Excel。单击工具栏中的“导入Excel”按钮,打开文件对话框选择文件夹,如XS1文件夹,系统将遍历该文件夹中的*.xls文件,并且将文件添加到列表区,效果如图2所示。

(2)提取列数据。单击工具栏中的“提取列数据”按钮,提取买家会员名、收货人姓名、联系手机和宝贝标题,效果如图3所示。提取后的数据将保存在程序所在目录下的mycell.xls文件中。

说明:“输出选项”可以选择数据分析结果要保存的位置,默认是程序所在文件夹。

(3)定向筛选。单击工具栏中的“定向筛选”按钮,筛选“零基础学Python”的用户信息,效果如图4所示。筛选后的数据将保存在程序所在目录下的mycell.xls文件中。

(4)多表合并。单击工具栏中的“多表合并”按钮,将列表中的Excel表全部合并成一个表,合并结果将保存在程序所在目录下的mycell.xls文件中。

(5)多表统计排行。单击工具栏中的“多表统计排行”按钮,按“宝贝标题”进行分组统计数量并进行排序,效果如图5所示。统计排行结果将保存在程序所在目录下的mycell.xls文件中。

(5)生成图表,该功能主要分析产品的贡献度。单击工具栏中的“生成图表”按钮,将全彩系列图书2018年上半年收入占80%的产品以图表形式展示,效果如图6所示。

五、部分代码展示

   #多表合并
    def click4(self):
        global root
        # 合并指定文件夹下的所有Excel表
        filearray = []
        filelocation = glob.glob(root+"\*.xls")
        for filename in filelocation:
            filearray.append(filename)
        res = pd.read_excel(filearray[0])
        for i in range(1, len(filearray)):
            A = pd.read_excel(filearray[i])
            res = pd.concat([res, A], ignore_index=False, sort=True)
        self.textEdit.setText(str(res.index))
        # 调用SaveExcel函数,将合并后的数据保存到Excel
        SaveExcel(res, self.rButton2.isChecked())
    #多表统计排行
    def click5(self):
        global root
        # 合并Excel表格
        filearray = []
        filelocation = glob.glob(root + "\*.xls")
        for filename in filelocation:
            filearray.append(filename)
        res = pd.read_excel(filearray[0])
        for i in range(1, len(filearray)):
            A = pd.read_excel(filearray[i])
            res = pd.concat([res, A], ignore_index=False, sort=True)
        # 分组统计排序
        # 通过reset_index()函数将groupby()的分组结果转成DataFrame对象
        df = res.groupby(["宝贝标题"])["宝贝总数量"].sum().reset_index()
        df1 = df.sort_values(by='宝贝总数量', ascending=False)
        self.textEdit.setText(str(df1))
        # 调用SaveExcel函数,将统计排行结果保存到Excel
        SaveExcel(df1, self.rButton2.isChecked())
    def click6(self):
        global root
        # 合并Excel表格
        filearray = []
        filelocation = glob.glob(root + "\*.xls")
        for filename in filelocation:
            filearray.append(filename)
        res = pd.read_excel(filearray[0])
        for i in range(1, len(filearray)):
            A = pd.read_excel(filearray[i])
            res = pd.concat([res, A], ignore_index=False, sort=True)
        # 分组统计排序
        # 通过reset_index()函数将groupby()的分组结果转成DataFrame对象
        df=res[(res.类别=='全彩系列')]
        df1 = df.groupby(["图书编号"])["买家实际支付金额"].sum().reset_index()
        df1 = df1.set_index('图书编号')  # 设置索引
        df1 = df1[u'买家实际支付金额'].copy()
        df2=df1.sort_values(ascending=False)  # 排序
        SaveExcel(df2, self.rButton2.isChecked())
        # 图表字体为华文细黑,字号为12
        plt.rc('font', family='SimHei', size=10)
        #plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号
        plt.figure("贡献度分析")
        df2.plot(kind='bar')
        plt.ylabel(u'销售收入(元)')
        p = 1.0*df2.cumsum()/df2.sum()
        print(p)
        p.plot(color='r', secondary_y=True, style='-o', linewidth=0.5)
        #plt.title("图书贡献度分析")
        plt.annotate(format(p[9], '.4%'), xy=(9, p[9]), xytext=(9 * 0.9, p[9] * 0.9),
                    arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.1"))  # 添加标记,并指定箭头样式。
        plt.ylabel(u'收入(比例)')
        plt.show()
    #单击“浏览”按钮选择文件存储路径
    def viewButton_click(self):
        global temproot
        temproot = QFileDialog.getExistingDirectory(self, "选择文件夹", "/")
        self.text1.setText(temproot)

六、源码地址

https://download.csdn.net/download/weixin_43860634/88335427


相关文章
|
3月前
|
存储 监控 算法
淘宝买家秀 API开发实录Python(2025)
本文讲述了作者在电商开发领域,尤其是对接淘宝买家秀 API 接口过程中所经历的挑战与收获。从申请接入、签名验证、频率限制到数据处理和实时监控,作者分享了多个实战经验与代码示例,帮助开发者更高效地获取和处理买家秀数据,提升开发效率。
|
4月前
|
数据采集 数据可视化 数据挖掘
用 Excel+Power Query 做电商数据分析:从 “每天加班整理数据” 到 “一键生成报表” 的配置教程
在电商运营中,数据是增长的关键驱动力。然而,传统的手工数据处理方式效率低下,耗费大量时间且易出错。本文介绍如何利用 Excel 中的 Power Query 工具,自动化完成电商数据的采集、清洗与分析,大幅提升数据处理效率。通过某美妆电商的实战案例,详细拆解从多平台数据整合到可视化报表生成的全流程,帮助电商从业者摆脱繁琐操作,聚焦业务增长,实现数据驱动的高效运营。
|
6月前
|
API C++ 开发者
PySide vs PyQt:Python GUI开发史诗级对决,谁才是王者?
PySide 和 PyQt 是 Python GUI 开发领域的两大利器,各有特色。PySide 采用 LGPL 协议,更灵活;PyQt 默认 GPL,商业使用需授权。两者背后团队实力雄厚,PySide 得到 Qt 官方支持,PyQt 由 Riverbank Computing 打造。API 设计上,PySide 简洁直观,贴近原生 Qt;PyQt 增加 Pythonic 接口,操作更高效。性能方面,两者表现优异,适合不同需求的项目开发。选择时可根据项目特点与开源要求决定。
496 20
|
2月前
|
设计模式 人工智能 API
AI智能体开发实战:17种核心架构模式详解与Python代码实现
本文系统解析17种智能体架构设计模式,涵盖多智能体协作、思维树、反思优化与工具调用等核心范式,结合LangChain与LangGraph实现代码工作流,并通过真实案例验证效果,助力构建高效AI系统。
371 7
|
8月前
|
前端开发 JavaScript 关系型数据库
基于Python+Vue开发的商城管理系统源码+运行步骤
基于Python+Vue开发的商城管理系统(前后端分离),这是一项为大学生课程设计作业而开发的项目。该系统旨在帮助大学生学习并掌握Python编程技能,同时锻炼他们的项目设计与开发能力。通过学习基于Python的网上商城管理系统项目,大学生可以在实践中学习和提升自己的能力,为以后的职业发展打下坚实基础。
268 7
|
3月前
|
算法 程序员 API
电商程序猿开发实录:淘宝商品python(2)
本文分享了开发者在对接淘宝商品详情API过程中的真实经历,涵盖权限申请、签名验证、限流控制、数据解析及消息订阅等关键环节,提供了实用的Python代码示例,帮助开发者高效调用API,提升系统稳定性与数据处理能力。
|
4月前
|
数据采集 存储 数据库
Python爬虫开发:Cookie池与定期清除的代码实现
Python爬虫开发:Cookie池与定期清除的代码实现
|
5月前
|
人工智能 搜索推荐 数据可视化
用 Python 制作简单小游戏教程:手把手教你开发猜数字游戏
本教程详细讲解了用Python实现经典猜数字游戏的完整流程,涵盖从基础规则到高级功能的全方位开发。内容包括游戏逻辑设计、输入验证与错误处理、猜测次数统计、难度选择、彩色输出等核心功能,并提供完整代码示例。同时,介绍了开发环境搭建及调试方法,帮助初学者快速上手。最后还提出了图形界面、网络对战、成就系统等扩展方向,鼓励读者自主创新,打造个性化游戏版本。适合Python入门者实践与进阶学习。
550 1
|
7月前
|
程序员 测试技术 开发工具
怎么开发Python第三方库?手把手教你参与开源项目!
大家好,我是程序员晚枫。本文将分享如何开发Python第三方库,并以我维护的开源项目 **popdf** 为例,指导参与开源贡献。Popdf是一个PDF操作库,支持PDF转Word、转图片、合并与加密等功能。文章涵盖从fork项目、本地开发、单元测试到提交PR的全流程,适合想了解开源贡献的开发者。欢迎访问[popdf](https://gitcode.com/python4office/popdf),一起交流学习!
241 21
怎么开发Python第三方库?手把手教你参与开源项目!
|
5月前
|
存储 算法 数据可视化
用Python开发猜数字游戏:从零开始的手把手教程
猜数字游戏是编程入门经典项目,涵盖变量、循环、条件判断等核心概念。玩家通过输入猜测电脑生成的随机数,程序给出提示直至猜中。项目从基础实现到功能扩展,逐步提升难度,适合各阶段Python学习者。
296 0

推荐镜像

更多