神经网络模型结构框架可视化的在线与软件绘图方法

简介: 神经网络模型结构框架可视化的在线与软件绘图方法

  之前向大家介绍了一种基于Python第三方ann_visualizer模块的神经网络可视化方法,大家可以直接点击博客:基于Python的神经网络模型结构框架可视化绘图简便方法https://blog.csdn.net/zhebushibiaoshifu/article/details/116212113)查看;这方法可以对Dense隐藏层以及MaxPooling层、Dropout层、Flatten层等其它类型的隐藏层加以绘制,功能非常强大,但是需要用代码执行,且在执行前需要将神经网络的全部结构与输入数据配置好后才可以绘制,稍微有一些繁琐。

  今天,就向大家介绍两种新的神经网络可视化绘图方法,其中,一种是在线绘制,一种是基于软件绘制(其也可以在网页中直接绘制)。

1 NN-SVG

  网址http://alexlenail.me/NN-SVG/index.html

  NN-SVG是一个在线神经网络结构绘制网页平台,进入后点点鼠标就可以绘制出精美的神经网络图像,且还可以对整幅图像的方向,以及接点、连接线、箭头等等要素的样式、大小、颜色、权重、间隙大小等属性加以调整,可谓非常方便、非常强大。

  在其最下方,可以对输入层、隐藏层与输出层的数量与神经元个数加以调整。

  配置完成取得满意的图像后,大家可以点击最上方的“Download SVG”进行图像下载。需要注意,下载图像的格式是.svg,需要我们手动转换为常见的图片格式。具体在线格式转换网站网上有很多,这里就不再叙述了~

  但是,NN-SVG仅仅可以显示简单的隐藏层,并不能对隐藏层的类型加以区分绘制。

2 Netron

  网址https://github.com/lutzroeder/netron

  Netron是一个对神经网络以及各类机器学习、深度学习算法进行可视化的工具,分为软件版与在线版(在线版网页https://netron.app/)。绘制时我们需要先建立并保存自己的模型(并且还是要运行之后的,因为其会显示模型中具体参数的变化情况),随后用其打开即可。Netron支持的模型格式如下所示。

  我们以Windows下其软件版本为例介绍。下载安装包后直接安装。

  安装完毕后打开软件,如下所示。

  随后,打开我们保存的模型。

  即可实现具体模型及其每一个参数变化情况的可视化图像,非常具体、细致。

  个人感觉用Netron进行具体带参数分析的可视化比较方便,如果只是想单纯看一下神经网络的结构的话,用其可能不太方便、不太直观。



相关文章
|
7天前
|
机器学习/深度学习 编解码 自动驾驶
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
31 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
|
7天前
|
机器学习/深度学习 移动开发 测试技术
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
27 1
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV2,含模型详解和完整配置步骤
|
7天前
|
机器学习/深度学习 编解码 TensorFlow
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
23 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
|
7天前
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
29 2
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型
|
7天前
|
机器学习/深度学习 文件存储 异构计算
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v2,加速训练,快速收敛
16 1
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
102 9
|
6月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
85 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
6月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
85 0

热门文章

最新文章